当前位置: 初中数学 / 填空题
  • 1. (2020九上·黄岛期末) (问题提出)

    在由 个小正方形(边长为1)组成的矩形网格中,该矩形的一条对角线所穿过的小正方形个数与m,n有何关系?

    (问题探究)

    为探究规律,我们采用一般问题特殊化的策略,通过分类讨论,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.

    1. (1) 探究一:

      当m,n互质(m,n除1外无其他公因数)时,观察图1并完成下表:

                

      图1

      矩形横长m

      2

      3

      3

      5

      4

      5

      公矩形纵长n

      1

      1

      2

      2

      3

      3

      矩形一条对角线所穿过的小正方形个数f

      2

      3

      4

      6

      6

      结论:当m,n互质时,在 的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f与m,n之间的关系式是

    2. (2) 探究二:

      当m,n不互质时,不妨设 (a,b,k为正整数,且a,b互质),观察图2并完成下表:

      图2

      a

      2

      3

      3

      5

      2

      3

      b

      1

      1

      2

      2

      1

      1

      k

      2

      2

      2

      2

      3

      矩形一条对角线所穿过的小正方形个数f

      4

      6

      8

      6

      结论:当m,n不互质时,若 (a,b,k为正整数,且a,b互质).在 的矩形网格中,该矩形一条对角线所穿过的小正方形的个数f与a,b,k之间的关系式是

    3. (3) (模型应用)

      一个由边长为1的小正方形组成的长为630,宽为490的矩形网格中,该矩形的一条对角线所穿过的小正方形个数是个.

      图3

    4. (4) (模型拓展)

      如图3,在一个由48个棱长为1的小正方体组成的长方体中,经过顶点A,B的直线穿过的小正方体的个数是个.

微信扫码预览、分享更方便