当前位置: 初中数学 / 综合题
  • 1. (2021九上·和平期末) 如图1,在平面直角坐标系中,抛物线y=ax2+x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).

    1. (1) 求抛物线的函数表达式及直线AB的函数表达式;
    2. (2) 如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;
    3. (3) 在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD以每秒个单位长度的速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为      (不必写出t的取值范围).

微信扫码预览、分享更方便