当前位置: 高中数学 / 解答题
  • 1. (2022·呼和浩特模拟) 第24届冬季奥林匹克运动会,即2022年北京冬季奥运会,是由中国举办的国际性奥林匹克赛事,于2022年2月4日开幕,2月20日闭幕,本届冬奥会的关注度已经超越了以往历届冬奥会.北京冬奥会国家速滑馆(“冰丝带”)承办了本届奥运会的部分冰上项目比赛.速度滑冰、冰球、花样滑冰项目中,运动员在冰面上急转急停时,冰刀会对冰面造成损伤,因此为给运动员们提供及时优质的冰面保障,每个比赛曰都需要及时补冰.已知,场馆室内温度的变化对于补冰量具有一定的影响,在赛事举办期间随机挑选五天,对场馆室内温度与补冰量进行测量,得到如下相关数据表:

    比赛日编号

    1

    2

    3

    4

    5

    场馆室内温度x(单位:℃)

    10

    11

    13

    12

    8

    补冰量y(单位:L)

    23

    25

    30

    26

    16

    附:样本 的最小二乘法估计公式为

    1. (1) 从这5个比赛日中任选2天,记这2个比赛日补冰量分别为m,n,求事件“m,n均不小于25”的概率;
    2. (2) 利用编号为2,3,4的3组相关数据,建立y关于x的线性回归方程,根据此回归方程,求场馆室内温度为10℃时的补冰量的估计值,并计算该估计值与测量值之差的绝对值.

微信扫码预览、分享更方便