当前位置: 初中数学 / 综合题
  • 1. (2022·潮阳模拟) 如图

    1. (1) 模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;
    2. (2) 模型应用:

      ①已知直线AB与y轴交于A点,与轴交于B点,sin∠ABO= , OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;

      ②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=25上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.

微信扫码预览、分享更方便