成绩(分) | 60 | 70 | 80 | 90 | 100 |
人 数 | 4 | 8 | 12 | 11 | 5 |
则该办学生成绩的众数和中位数分别是( )
①已知直线AB与y轴交于A点,与轴交于B点,sin∠ABO= , OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;
②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=25上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.
①如图1,过点 作 轴于点 ,作 轴于点 ,当 时,求 的长;
②如图2,该抛物线上是否存在点 ,使得 ?若存在,请求出所有点 的坐标;若不存在,请说明理由.