问题提出:如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“幸福数”.例如, , 16就是一个幸福数.我们按照从小到大的顺序把“3,5,7,8,…, , …” 这些幸福数进行排列依次记为:第1个幸福数3,第2个幸福数5,第3个幸福数7,第4个幸福数8,…,第个幸福数.现在需要探究出一种判断一个较大的数是否是幸福数的方法;以及如何求出第个幸福数的值.
实践探究:小明的方法是:在正整数中,从1开始采取从小到大逐个排查的办法一个一个找出来:
, , ,
, , ,
…
小颖认为小明的方法太麻烦,她想到:设是正整数,由于 , 所以,除1外,所有的奇数都是幸福数;又因为所以,除4外,所有能被4整除的偶数都是幸福数;小颖通过上面的探索,已经证明了形如、、(是正整数)的正整数都是幸福数.