①若 , 则不等式组的解集为;
②若 , 则不等式组无解;
③若不等式组有解,则a的取值范围;
④若不等式组只有四个整数解,则a的值只可以为7;
其中,正确结论的个数是( )
问题提出:如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“幸福数”.例如, , 16就是一个幸福数.我们按照从小到大的顺序把“3,5,7,8,…, , …” 这些幸福数进行排列依次记为:第1个幸福数3,第2个幸福数5,第3个幸福数7,第4个幸福数8,…,第个幸福数.现在需要探究出一种判断一个较大的数是否是幸福数的方法;以及如何求出第个幸福数的值.
实践探究:小明的方法是:在正整数中,从1开始采取从小到大逐个排查的办法一个一个找出来:
, , ,
, , ,
…
小颖认为小明的方法太麻烦,她想到:设是正整数,由于 , 所以,除1外,所有的奇数都是幸福数;又因为所以,除4外,所有能被4整除的偶数都是幸福数;小颖通过上面的探索,已经证明了形如、、(是正整数)的正整数都是幸福数.
某数学兴趣小组在一次课外学习与探究中遇到一个新的运算符号,他们将其中某些材料摘录如下:对于三个数 , 用表示这三个数中最大的数,例如: , , , 请结合上面材料,解决下列问题:
小逸在趣味数学书上看到这样一道题:已知 , 且 , , 设 , 那么的取值范围是什么?
【回顾】
小逸回顾做过的一道简单的类似题目:
已知 , 设 , 那么的取值范围是 ① .
【探究】
小逸想:可以将趣味数学书上的复杂问题转化为上面回顾的类似题目.
由得 , 则 ,
由 , , 得关于的一元一次不等式组 ② ,
解该不等式组得到的取值范围为 ③ ,
则的取值范围是 ④ .
①:;②:;③:;④:.
(ⅱ)若 , 且 , , , 设 , 且为整数,求所有可能的值的和.
学习了一元一次不等式组的解法,老师给同学们布置了一个任务,请大家探究并求出不等式 的解集.
小丽类比有理数的乘法法则,根据“同号两数相乘,积为正”可以得到:①或② , 解不等式组①得 , 解不等式组②得 , 所以原不等式解集为或 . 请你仿照上述方法,求不等式的的解集.
②根据①,你发现了结论“如果M{a , b , c}=min{a , b , c},那么 (填a , b , c的大小关系)”.证明你发现的结论;
③运用②的结论,填空:若M{2x+y+2,x+2y , 2x﹣y}=min{2x+y+2,x+2y,2x﹣y},则x+y= .
我们给出如下定义:数轴上给定不重合两点A , B , 若数轴上存在点M , 使得点M到点A的距离等于点M到点B的距离的2倍,则称点M为点A与点B的“亚运点”.其中在A,B之间的点M为点A与点B的“亚运@未来点”
解答下列问题:
①设点M表示的数为m , 若点M可以为点A与点B的“亚运@未来点”,则m可取得整数有;
②若点A和点D同时以每秒2个单位长度的速度向数轴正半轴方向移动.设移动的时间为t(t>0)秒,当t的整数值为时,点O可以为点A与点B的“亚运@未来点”.
①求a的取值范围;
②直接写出代数式的最大值.
新定义:对非负实数“四舍五入”到个位的值记为 , 即:当为非负整数时,如果 , 则;
反之,当为非负整数时,如果 , 则 .
例如: , , , ,
试解决下列问题:
如果 , 求实数的取值范围;
定义:使方程(组)与不等式(组)同时成立的未知数的值称为此方程(组)和不等式(组)的“理想解”.例如:已知方程与不等式 , 当时, , 同时成立,则称“”是方程与不等式的“理想解”.
问题解决:
① ,
② ,
③;
小明在一本数学杂志上看到一道有意思的数学题:解不等式 , 根据绝对值的几何意义,到原点距离小于1的点在数轴上集中在-1和+1之间,如图:
所以,该不等式的解集为 .
因此,不等式的解集为或 .
根据以上方法小明继续探究了不等式的解集,即到原点的距离大于2小于5的点的集合就集中在这样的区域内,如图:
所以,不等式的解集为-5<x<-2或2<x<5.
仿照小明的做法解决下面问题:
解:⑴当 , 即时:
解这个不等式,得:
由条件 , 有:
⑵当 , 即时,
解这个不等式,得:
由条件 , 有:
∴如图,综合(1)、(2)原不等式的解为
根据以上思想,请探究完成下列2个小题:
如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>a(a>0)和|x|<a(a>0)的解集.
小明同学的探究过程如下:
先从特殊情况入手,求|x|>2和|x|<2的解集.确定|x|>2的解集过程如下:
先根据绝对值的几何定义,在数轴上找到到原点的距离大于2的所有点所表示的数,在数轴上确定范围如下:
所以,|x|>2的解集是x>2或.
再来确定|x|<2的解集:同样根据绝对值的几何定义,在数轴上找到到原点的距离小于2的所有点所表示的数,在数轴上确定范围如下:
所以,|x|<2的解集为:.
经过大量特殊实例的实验,小明得到绝对值不等式|x|>a(a>0)的解集为,|x|<a(a>0)的解集为.
请你根据小明的探究过程及得出的结论,解决下列问题:
问题的提出
根据以下提供的素材,在总费用(新墙的建筑费用与门的价格和)不高于6400元的情况下,如何设计最大饲养室面积的方案?
素材1:图1是某农场拟建两间矩形饲养室,饲养室的一面靠现有墙,中间用一道墙隔开,计划中建筑材料可建围墙的总长为20m,开2个门,且门宽均为1m.
素材2:2个门要求同一型号,有关门的采购信息如表.
如表
型号 | A | B | C |
规格(门宽) | 1米 | 1.2米 | 1米 |
单价(元) | 250 | 280 | 300 |
素材3:与现有墙平行方向的墙建筑费用为400元/米,与现有墙垂直方向的墙建筑费用为200元/米.
问题解决
任务1 | 确定饲养室的形状 设AB=x,矩形ABCD的面积为S,求S关于x的函数表达式. |
任务2 | 探究自变量x的取值范围. |
任务3 | 确定设计方案 我的设计方案是选型号▲ 门,AB=▲ m,BC=▲ m,S的最大值为▲ m2. |
探究:设行驶吋间为t分.
情况一:若他刚好错过2号车,便搭乘即将到来的1号车;
情况二:若他刚好错过1号车,便搭乘即将到来的2号车.
比较哪种情况用时较多?(含候车时间)
决策:已知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A重合)时,刚好与2号车迎面相遇.
他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:
问题解决:
学校在某商场购买甲、乙两种不同类型的足球,相关信息如下:购买甲种足球共用2000元,购买乙种足球共花费1400元.已知购买一个乙种足球比购买一个甲种足球多花20元.设购买一个甲种足球的单价是元。
A.等式的基本性质
B.不等式的基本性质
C.乘法对加法的分配律
②在“接力游戏”中,出现错误的是同学,这一步错误的原因是.
接力游戏 老师 甲同学 乙同学 丙同学 丁同学 戊同学 |
①观察图 ,若这两个机器人第一次迎面相遇时,相遇地点与点 之间的距离为 个单位长度,则他们第二次迎面相遇时,相遇地点与点 之间的距离为 个单位长度;
②若这两个机器人第一次迎面相遇时,相遇地点与点 之间的距离为 个单位长度,则他们第二次迎面相遇时,相遇地点与点 之间的距离为 个单位长度;
设这两个机器人第一次迎面相遇时,相遇地点与点 之间的距离为 个单位长度,他们第二次迎面相遇时,相遇地点与点 之间的距离为 个单位长度.兴趣小组成员发现了 与 的函数关系,并画出了部分函数图象(线段 ,不包括点 ,如图 所示).
① =;
②分别求出各部分图象对应的函数表达式,并在图 中补全函数图象;
设这两个机器人第一次迎面相遇时,相遇地点与点 之间的距离为 个单位长度,他们第三次迎面相遇时,相遇地点与点 之间的距离为 个单位长度.若这两个机器人第三次迎面相遇时,相遇地点与点 之间的距离 不超过 个单位长度,则他们第一次迎面相遇时,相遇地点与点 之间的距离 的取值范围是.(直接写出结果)