-
1.
(2022·房山模拟)
对于平面直角坐标系
中的图形
和图形
. 给出如下定义:在图形
上存在两点A,B(点A,B可以重合),在图形
上存在两点M,N,(点M、N可以重合)使得
, 则称图形
和图形
满足限距关系
![](//tikupic.21cnjy.com/2022/07/13/2a/8a/2a8a7121c7deec57859c1a678952d871.png)
-
(1)
如图1,点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmsqrt%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsqrt%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
, 点P在线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
上运动(点P可以与点C,E重合),连接
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EO%3C%2Fmi%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
.
①线段
的最小值为,最大值为;线段
的取值范围是;
②在点O,点D中,点与线段
满足限距关系;
-
-
(2)
在(1)的条件下,如图2,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EO%3C%2Fmi%3E%3C%2Fmath%3E)
的半径为1,线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
与x轴、y轴正半轴分别交于点F,G,且
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmtext%3E%E2%88%A5%3C%2Fmtext%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
, 若线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EO%3C%2Fmi%3E%3C%2Fmath%3E)
满足限距关系,求点F横坐标的取值范围;
-
-
(3)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EO%3C%2Fmi%3E%3C%2Fmath%3E)
的半径为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
, 点H,K是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EO%3C%2Fmi%3E%3C%2Fmath%3E)
上的两个点,分别以H,K为圆心,2为半径作圆得到
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EH%3C%2Fmi%3E%3C%2Fmath%3E)
和
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EK%3C%2Fmi%3E%3C%2Fmath%3E)
, 若对于任意点H,K,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EH%3C%2Fmi%3E%3C%2Fmath%3E)
和
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%8A%99%3C%2Fmtext%3E%3Cmi%3EK%3C%2Fmi%3E%3C%2Fmath%3E)
都满足限距关系,直接写出r的取值范围.
-
微信扫码预览、分享更方便