材料一:已知m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,
∴(m2-2mn+n2)+(n2-8n+16)=0,
∴(m-n)2+(n-4)2=0,
∵(m-n)2≥0,(n-4)2≥0
∴(m-n)2=0,(n-4)2=0
∴m=n=4.
材料二:探索代数式x2+4x+2与-x2+2x+3是否存在最大值或最小值?
①x2+4x+2=(x2+4x+4)-2=(x+2)2-2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2-2≥-2.
∴代数式x2+4x+2有最小值-2;
②-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4,∵-(x-1)2≤0,∴-x2+2x+3=-(x-1)2+4≤4.
∴代数式-x2+2x+3有最大值4.
学习方法并完成下列问题: