当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省苏州市2021-2022学年七年级下学期期中数学试卷

更新时间:2022-08-05 浏览次数:84 类型:期中考试
一、单选题
二、填空题
三、解答题
    1. (1) x5•(-2x)3+x9÷x2•x-(3x42
    2. (2) (2a-3b)2-4a(a-2b)
    3. (3) (3x-y)2(3x+y)2
    4. (4) (2a-b+5)(2a+b-5)
    1. (1) 2a2b-8ab2+8b3
    2. (2) 4a2(m-n)+9(n-m)
    3. (3) 81x4-16
    4. (4) (m2+5)2-12(m2+5)+36
  • 19. (2022七下·苏州期中) 已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.

  • 20. (2022七下·苏州期中) 已知x+y=3,xy= , 求下列各式的值:
    1. (1) (x2-2)(y2-2);
    2. (2) x2y-xy2.
  • 21. (2022七下·苏州期中) 解决下列问题:
    1. (1) 若4a-3b+7=0,求32×92a+1÷27b的值;
    2. (2) 已知x满足22x+4-22x+2=96,求x的值.
    3. (3) 对于任意有理数A,B,C,D,我们规定符号(a,b)⋇(c,d)=ad-bc+2,例如:(1,3)⋇(2,4)=1×4-2×3+2=0.当a2+a+5=0时,求(2a+1,a-2)⋇(3a+2,a-3)的值.
  • 22. (2022七下·苏州期中) 阅读材料:已知a+b=8,ab=15,求a2+b2的值.

    解:a2+b2=(a+b)2-2ab=64-30=34.

    参考上面的方法求解下列问题:

    1. (1) 已知x满足(x-2)(3-x)=-1,求(x-2)2+(3-x)2的值.
    2. (2) 如图①,已知长方形ABCD的周长为12,分别以AD、AB为边,向外作正方形ADEF、ABGH,且正方形ADEF、ABGH的面积和为20.

      ① 求长方形ABCD的面积;

      ②如图②,连接HF、CF、CH,求△CFH的面积.

  • 23. (2022七下·苏州期中) 利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:

    材料一:已知m2-2mn+2n2-8n+16=0,求m、n的值.

    解:∵m2-2mn+2n2-8n+16=0,

    ∴(m2-2mn+n2)+(n2-8n+16)=0,

    ∴(m-n)2+(n-4)2=0,

    ∵(m-n)2≥0,(n-4)2≥0

    ∴(m-n)2=0,(n-4)2=0

    ∴m=n=4.

    材料二:探索代数式x2+4x+2与-x2+2x+3是否存在最大值或最小值?

    ①x2+4x+2=(x2+4x+4)-2=(x+2)2-2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2-2≥-2.

    ∴代数式x2+4x+2有最小值-2;

    ②-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4,∵-(x-1)2≤0,∴-x2+2x+3=-(x-1)2+4≤4.

    ∴代数式-x2+2x+3有最大值4.

    学习方法并完成下列问题:

    1. (1) 代数式x2-6x+3的最小值为
    2. (2) 如图,在紧靠围墙的空地上,利用围墙及一段长为100米的木栅栏围成一个长方形花圃,为了设计一个尽可能大的花圃,设长方形垂直于围墙的一边长度为x米,则花圃的最大面积是多少?

    3. (3) 已知△ABC的三条边的长度分别为a,b,c,且a2+b2+74=10a+14b,且c为正整数,求△ABC周长的最小值.
  • 24. (2022七下·苏州期中) 【生活常识】

    射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.

    【应用探究】

    有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD.

    1. (1) 如图2,若OM⊥ON,试证明AB∥CD;
    2. (2) 如图3,光线AB与CD相交于点P,若∠MON=48°,求∠BPC的度数;
    3. (3) 如图4,光线AB与CD所在的直线相交于点P,∠MON=α,∠BPC=β,试猜想α与β之间满足的数量关系,并说明理由.

微信扫码预览、分享更方便

试卷信息