当前位置: 初中数学 / 综合题
  • 1. (2022七下·雨花期末) 问题情境:

    我们知道,“如果两条平行直线被第三条直线所截,截得的同位角相等,内错角相等,同旁内角互补”,所以在某些探究性度量中通过“构造平行线”可以起到转化角的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE//GF.

    问题初探:

    如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,则∠EMC的度数是多少呢?若过点C作CH//GF,则CH//DE,这样就将∠CAF转化为∠HCA,∠EMC转化为∠MCH,从而可以求得∠EMC的度数为….

    1. (1) 请你直接写出:∠CAF=°,∠EMC=°.
    2. (2) 类比再探:若将将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想∠EMC与∠CAF的数量关系?并说明理由.

       

    3. (3) 方法迁移:请你猜想(1)(2)解决问题的思路,在图(2)中探究∠BAG与∠BMD的数量关系?并说明理由.

微信扫码预览、分享更方便