当前位置: 初中数学 / 阅读理解
  • 1. (2022八下·怀仁期末) 阅读理解

    阅读下列材料,完成相应任务.

    直角三角形斜边上的中线等于斜边的一半

    如图1,△ABC中,∠ABC=90°,BD是斜边AC上的中线.求证:BD=AC.

    分析:要证明BD等于AC的一半.可以用“倍长法”将BD延长一倍,如图2,延长BD到E,使得DE=BD.连接AE,CE.可证四边形ABCE是矩形,由矩形的对角线相等得BE=AC,这样将直角三角形斜边上的中线与斜边的数量关系转化为矩形对角线的数量关系,进而得到BD=AC.

    1. (1) 任务一:请你按材料中的分析写出证明过程;
    2. (2) 任务二:上述证明方法中主要体现的数学思想是____;
      A . 转化思想 B . 类比思想 C . 数形结合思想 D . 从一般到特殊思想
    3. (3) 任务三:如图3,点C是线段AB上一点,CD⊥AB,点E是线段CD的中点,分别连接AD、BE,点F,G分别是AD和BE的中点,连接FG.若AB=12,AC=CD=8,则FG=

微信扫码预览、分享更方便