现规定:求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③ , 读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④ , 读作“(﹣3)的圈4次方”,一般地把(a≠0)写作aⓝ , 读作“a的圈n次方”.
初步探究:
A.任何非零数的圈2次方都等于1
B.任何非零数的圈3次方都等于它的倒数
C.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数
D.圈n次方等于它本身的数是1或﹣1.
深入思考: 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?