当前位置: 初中数学 / 综合题
  • 1. (2021九上·寻乌期末) 通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

    原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

    1. (1) 思路梳理

      ∵AB=CD,

      ∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.

      ∵∠ADC=∠B=90°,

      ∴∠FDG=180°,点F、D、G共线.

      根据,易证△AFG≌,得EF=BE+DF.

    2. (2) 类比引申

      如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.

    3. (3) 联想拓展

      如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

微信扫码预览、分享更方便