如图①,在中,CD为斜边AB边上的高,在DC的延长线上取一点E,连接AE,BE,得到锐角三角形ABE,
∵ ,
∴ .
得出结论:锐角三角形夹锐角两边的平方和大于第三边的平方.
像这种不用进行复杂的计算或推理,通过构造图形可以直观得到结论的方法,我们称之为“构图直观法”.
情况二:钝角三角形
你能借助上述“构图直观法”,得到钝角三角形三边之间类似的关系吗?请在图②中画出图形,得出结论并说明理由.得出结论:.
下面我们用这种方法来研究其他问题:
已知正方形ABCD,现作一个大正方形,使得正方形ABCD的四个顶点分别在大正方形的四条边上,则大正方形和正方形ABCD的面积之间会有怎样的数量关系?
如图③,作出一个满足要求的大正方形EFGH,使得正方形ABCD的四个顶点分别在大正方形各边中点上.过点A,B,C,D分别作大正方形的边的平行线,恰好与正方形ABCD的两条对角线所在直线重合,观察图形,则与的数量关系为:.