当前位置: 初中数学 / 解答题
  • 1. (2023九上·丘北月考) 在学习《完全平方公式》时,某数学学习小组发现:已知a+b=5,ab=3,可以在不求a、b的值的情况下,求出a2+b2的值.具体做法如下:

    a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.

    1. (1) 若a+b=7,ab=6,则a2+b2
    2. (2) 若m满足(8-m)(m-3)=3,求(8-m)2+(m-3)2的值,同样可以应用上述方法解决问题.具体操作如下:

      解:设8-m=a,8-m=a,m-3=b,

      则a+b=(8-m)+(m-3)=5,a+b=(8-m)+(m-3)=5,ab=(8-m)(m-3)=3,

      所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.

      请参照上述方法解决下列问题:若(3x-2)(10-3x)=6,求(3x-2)2+(10-3x)2的值;

微信扫码预览、分享更方便