当前位置: 初中数学 / 解答题
  • 1. (2023九上·丘北期中) 已知实数ab满足(2a2+b2+1)(2a2+b2-1)=80,试求2a2+b2的值.解:设2a2+b2m , 则原方程可化为(m+1)(m-1)=80,即m2=81,解得:m=±9,∵2a2+b2≥0,∴2a2+b2=9,上面的这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂问题简单化.根据以上阅读材料,解决下列问题:

    1. (1) 已知实数xy满足(2x2+2y2-1)(x2+y2)=3,求3x2+3y2-2的值;
    2. (2) 若四个连续正整数的积为120,求这四个正整数.

微信扫码预览、分享更方便