当前位置: 初中数学 / 实践探究题
  • 1. (2023八上·邕宁期中)  综合实践

    在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成的,在相对位置变化的同时,适中存在一对全等三角形,兴趣小组成员经过研讨给出定义:如果两个等腰三角形的顶角相等,且顶角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,可以形象地看作两双手,所以通常称为“手拉手模型”,如图1,△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS).

    1. (1) [初步把握]如图2,△ABC与△ADE都是等腰三角形,AB=AC,且∠BAC=∠DAE,则有 
    2. (2) [深入研究]如图3,已知△ABC,以AB、AC为边分别向外作等边△ABD和等边△ACE,并连接BE、CD,求证:BE=CD.
    3. (3) [拓展延伸]如图4,在两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,交于点P,请判断BD和CE的关系,并说明理由.

微信扫码预览、分享更方便