当前位置: 初中数学 / 阅读理解
  • 1. (2024八下·盐山期中) 【阅读材料】如图1,有一个圆柱,它的高为12cm,底面圆的周长为18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,蚂蚁沿圆柱侧面爬行的最短路程是多少?

    【方法探究】对于立体图形中求最短路程问题,应把立体图形展开成平面图形,再确定AB两点的位置,依据“两点之间线段最短”,结合勾股定理,解决相应的问题.如图2,在圆柱的侧面展开图中,点AB对应的位置如图所示,利用勾股定理即可求出蚂蚁爬行的最短路程线段AB的长.

    【方法应用】

    1. (1) 如图3,圆柱形玻璃容器的高为18cm,底面周长为60cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度.

    2. (2) 如图4,长方体的棱长 , 假设昆虫甲从盒内顶点开始以的速度在盒子的内部沿棱向下爬行,同时昆虫乙从盒内顶点以相同的速度在盒内壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?

微信扫码预览、分享更方便