形式1:把个元素分为个集合,那么必有一集合中含有两个或两个以上的元素.
形式2:把个元素分为个集合,那么必有一集合中含有个或个以上的元素.
形式3:把无穷多个元素分为有限个集合,那么必有一个集合中含有无穷多个元素.
形式4:把个元素分为个集合,那么必有一个集合中的元素个数 , 也必有一个集合中的元素个数.(注:若 , 则表示不超过的最大整数,表示不小于的最小整数). 根据上述原则形式解决下面问题:
②举例说明形式3,并用列举法或描述法表示相关集合.
①从上面这2024个数中任意挑选1013个数,证明在这1013个数中一定有两个数互质;(若两个整数的公约数只有1,则这两个整数互质)
②证明:在上面的圆周上一定存在一点和与它相邻的两个点所标的三个数之和不小于3038.