当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河北省沧州市联考2023-2024学年高三下学期4月月考数学...

更新时间:2024-07-18 浏览次数:9 类型:月考试卷
一、、选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
二、、多选题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)
三、、填空题(本题共3小题,每小题5分,共15分)
四、、解答题(本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)
  • 15. (2024高三下·沧州月考)  某市小学课后延时服务中,为学生提供了丰富多彩的兴趣课程,其中文艺类的课程有“书法”“茶艺”“民族舞”“朗诵”,体育类的课程有“乒乓球”“足球”“韵律操”“围棋”.为了了解选课情况,现在采取抽样调查,得到下表:

     

    文娱类

    体育类

     

    书法

    茶艺

    民族舞

    朗诵

    乒乓球

    足球

    韵律操

    围棋

    男生

    18

    7

    8

    7

    20

    24

    4

    12

    女生

    24

    14

    18

    14

    18

    10

    14

    8

    附: , 其中.

    0.10

    0.05

    0.010

    0.001

    2.706

    3.841

    6.635

    10.828

    1. (1) 完成如下列联表,并依据小概率值的独立性检验,分析学生选择兴趣课程是否与学生性别有关联;


      文娱类

      体育类

      合计

      男生

      女生

      合计

    2. (2) 该市教育主管部门为进一步了解男生选课的情况,现从抽取的男生中用分层随机抽样的方法抽取10人,再从这10位男生中随机抽取3人进行座谈,设抽到的男生中选择“文娱类”兴趣课程的人数为 , 求的分布列及期望.
  • 16. (2024高三下·沧州月考)  如图,在直三棱柱中,△为边长为2的正三角形,中点,点在棱上,且.

    1. (1) 当时,求证平面
    2. (2) 设为底面的中心,求直线与平面所成角的正弦值的最大值,并求取得最大值时的值.
  • 17. (2024高三下·沧州月考)  如图,椭圆的右顶点为 , 上顶点为 , 过点的直线交椭圆两点.

    1. (1) 若直线垂直,求
    2. (2) 过点轴的垂线,分别交直线 , 记的面积分别是 , 判断是否为定值,若是,求出此定值;若不是,说明理由.
  • 18. (2024高三下·沧州月考)  抽屉原则是德国数学家狄利克雷(P.G.T.Dirichlet,1805~1859)首先提出来的,也称狄利克雷原则. 它有以下几个基本表现形式(下面各形式中所涉及的字母均为正整数):

    形式1:把个元素分为个集合,那么必有一集合中含有两个或两个以上的元素.

    形式2:把个元素分为个集合,那么必有一集合中含有个或个以上的元素.

    形式3:把无穷多个元素分为有限个集合,那么必有一个集合中含有无穷多个元素.

    形式4:把个元素分为个集合,那么必有一个集合中的元素个数 , 也必有一个集合中的元素个数.(注:若 , 则表示不超过的最大整数,表示不小于的最小整数). 根据上述原则形式解决下面问题:

    1. (1) ①举例说明形式1;

      ②举例说明形式3,并用列举法或描述法表示相关集合.

    2. (2) 证明形式2;
    3. (3) 圆周上有2024个点,在其上任意标上(每点只标一个数,不同的点标上不同的数).

      ①从上面这2024个数中任意挑选1013个数,证明在这1013个数中一定有两个数互质;(若两个整数的公约数只有1,则这两个整数互质)

      ②证明:在上面的圆周上一定存在一点和与它相邻的两个点所标的三个数之和不小于3038.

    1. (1) 求函数的单调性;
    2. (2) 若有两个不相等的零点 , 且.

      ①证明:的增大而减小;

      ②证明:.

微信扫码预览、分享更方便

试卷信息