当前位置: 初中数学 / 综合题
  • 1. (2024·惠城模拟) 如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).

    1. (1) 求抛物线和直线l的解析式;
    2. (2) 当点P在直线l上方的抛物线上时,连接PA、PD,当△PAD的面积最大时,求P点的坐标.
    3. (3) 设M为直线l上的点,探究是否存在点M,使得以点N、C、M、P为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由。

微信扫码预览、分享更方便