配方法不仅可以解一元二次方程,还可以用来求“最值”问题.
例如:求代数式的最值.
解:因为
(分离常数项)
(提二次项系数)
(配方)
所以当时,代数式取得最小值3.
再如:求代数式的最值.
解:因为
所以当时,代数式取得最大值 .
(1)【材料理解】
时,代数式的最 “大”或“小” 值为 .
(2)【类比应用】
试判断关于的一元二次方程实数根的情况,并说明理由.
(3)【迁移应用】
如图,有一块锐角三角形余料 , 它的边厘米,高厘米.现要用它裁出一个矩形工件 , 使矩形的一边在上,其余的两个顶点分别在、上.
①设 , 试用含的代数式表示矩形工件的面积;
②运用“配方法”求的最大值.