试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
初中数学
/
综合题
1.
(2018·松滋模拟)
建立模型:
(1) 如图 1,已知△ABC,AC=BC,∠C=90°,顶点C在直线 l 上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.
模型应用:
(2) 如图2,在直角坐标系中,直线l
1
:y=
x+8与y轴交于点A,与x轴交于点B,将直线l
1
绕着点A顺时针旋转45°得到l
2
. 求l
2
的函数表达式.
(3) 如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点 A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.
微信扫码预览、分享更方便