当前位置: 初中数学 / 综合题
  • 1. (2018·松滋模拟) 建立模型:     

    1. (1) 如图 1,已知△ABC,AC=BC,∠C=90°,顶点C在直线 l 上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.

      模型应用:


    2. (2) 如图2,在直角坐标系中,直线l1:y= x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2 .   求l2的函数表达式.

    3. (3) 如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点 A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.

微信扫码预览、分享更方便