①存在一条直线a,使得a⊥α,a⊥β;
②存在两条平行直线a,b,使得a∥α,a∥β,b∥α,b∥β;
③存在两条异面直线a,b,使得a⊂α,b⊂β,a∥β,b∥α;
④存在一个平面γ,使得γ⊥α,γ⊥β.
其中可以推出α∥β的条件个数是( )
①若loga3>logb3,则a>b;
②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数 既是奇函数又是减函数.
其中正确的命题有
(Ⅰ)若 ,且点P在函数 的图像上,求直线l的一般式方程;
(Ⅱ)若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.
(Ⅰ)若函数g(x)有两个零点x1 , x2 , 且x1<4<x2 , 求实数a的取值范围;
(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有 ,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.