风洞飞行体验是运用先进的科技手段实现高速风力将人吹起并悬浮于空中,如图所示.若在人处于悬浮状态时增加风力,则体验者在加速上升过程中( )
如图所示,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向向下的恒定电流,若( )
物体做直线运动的vt图象如图所示.则该物体( )
如图所示,开关S闭合后,带电质点P在平行金属板中处于静止状态.则( )
如图所示,发射升空的卫星在转移椭圆轨道Ⅰ上A点处经变轨后进入运行圆轨道Ⅱ.A、B分别为轨道Ⅰ的远地点和近地点.则卫星在轨道Ⅰ上( )
某发电机输出的交流电如图所示,经理想变压器升压后向远处输送,最后经理想变压器降压后输送给用户.则下列说法正确的是( )
如图所示,劲度系数为k的轻质弹簧一端固定于O点,另端固定一个质量为m的小球.将小球拉至A点处时,弹簧恰好无形变.现将小球从A点处由静止释放,小球运动到O点正下方B点时速度大小为v.A、B两位置间的高度差为h.不计空气阻力,重力加速度为g.则( )
如图所示,两个等量异号点电荷M、N分别固定在A、B两点,F为AB连线中垂线上某一点,O为AB连线的中点.且AO=OF,E和φ分别表示F处的场强大小和电势.将某试探负点电荷由F处静止释放时,其电势能和加速度大小分别用ε和a表示,取无穷远处为电势零点.若将负点电荷N移走,则( )
在“探究求合力的方法”实验中,某同学用两把弹簧秤将橡皮筋的端点拉到点O,作出这两个拉力F1、F2的图示(图甲),然后用一把弹簧秤将橡皮筋的端点仍然拉到O,弹簧秤示数F如图乙所示.
(A) 整理实验器材
(B) 提出求合力方法的猜想
(C) 改变F1、F2的大小和方向,重复上述实验
(D) 与同学交流讨论实验结果,得出结论.
用20分度的游标卡尺测量其长度如图1乙所示,由图可知其长度为 mm,用螺旋测微器测量其直径如图1丙所示,其直径为 mm;
U/V | 0 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 | 1.32 | 1.50 |
I/A | 0 | 0.20 | 0.45 | 0.80 | 1.25 | 1.80 | 2.20 | 2.81 |
如图所示为一滑草场某条滑道的侧面图,由高均为h、与水平面倾角分别为45°和37°的两段直滑道组成.一辆滑草车由静止开始从上滑道顶端处滑下,不计车在滑道交接处的能量损失.已知滑草车与上、下滑道草地之间的动摩擦因数μ,重力加速度为g,sin 37°=0.6,cos 37°=0.8,计算结果请用h和g表示.求:
能否到达下段滑道的最底端.
如图所示的装置由水平弹簧发射器及两个轨道组成:轨道Ⅰ是光滑轨道AB,AB间高度差h1=0.20m;轨道Ⅱ由AE和螺旋圆形EFG两段光滑轨道和粗糙轨道GB平滑连接而成,且A点与F点等高.轨道最低点与AF所在直线的高度差h2=0.40m.当弹簧压缩量为d时,恰能使质量m=0.05kg的滑块沿轨道Ⅰ上升到B点,当弹簧压缩量为2d时,恰能使滑块沿轨道Ⅱ上升到B点,滑块两次到达B点处均被装置锁定不再运动.已知弹簧弹性势能Ep与弹簧压缩量x的平方成正比,弹簧始终处于弹性限度范围内,不考虑滑块与发射器之间的摩擦,重力加速度g=10m/s2 .
如图所示,两根足够长的平行金属导轨间距l=0.50m,倾角θ=53°,导轨上端串接电阻R=0.05Ω.在导轨间长d=0.56m的区域内,存在方向垂直导轨平面向下、磁感应强度B=2.0T的匀强磁场.质量m=4.0kg的金属棒CD水平置于导轨上,用轻质细绳跨过定滑轮与拉杆GH(GH杆的质量不计)相连.某同学用F=80N的恒力竖直向下拉动GH杆,使CD棒从图中初始位置由静止开始运动,刚进入磁场时速度为v=2.4m/s,当CD棒到达磁场上边界时该同学松手.g=10m/s2 , sin 53°=0.8,不计其它电阻和一切摩擦.求:
如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.