(Ⅰ)求C;
(Ⅱ)若△ABC的面积为 ,求a与b的值.
(Ⅰ)求图中的x的值;
(Ⅱ)估计该校高一学生每周课外阅读的平均时间;
(Ⅲ)为了进一步提高本校高一学生对课外阅读的兴趣,学校准备选拔2名学生参加全市阅读知识竞赛,现决定先在第三组、第四组、第五组中用分层抽样的放法,共随机抽取6名学生,再从这6名学生中随机抽取2名学生代表学校参加全市竞赛,在此条件下,求第三组学生被抽取的人数X的数学期望.
(Ⅰ)证明:BD1⊥平面A1C1D;
(Ⅱ)求BD1与平面A1BC1所成角的正弦值.
在平面直角坐标系xOy中,曲线C1的参数方程为 (α为参数),将曲线C1上所有点的横坐标缩短为原来的 ,纵坐标缩短为原来的 ,得到曲线C2 , 在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为4ρsin(θ+ )+ =0.
已知函数f(x)=|a﹣x|(a∈R)
(Ⅰ)当a= 时,求使不等式f(2x﹣ )>2f(x+2)+2成立的x的集合A;
(Ⅱ)设x0∈A,证明f(x0x)≥x0f(x)+f(ax0).