当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2014年浙江省金华市中考数学试卷

更新时间:2017-04-25 浏览次数:640 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 17. (2014·金华) 计算: ﹣4cos45°+( 1+|﹣2|.
  • 18. (2014·金华) 先化简,再求值:(x+5)(x﹣1)+(x﹣2)2 , 其中x=﹣2.

  • 19. (2014·金华) 在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).

    1. (1) 如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
    2. (2) 在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)
  • 20. (2014·金华)

    一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.

    1. (1) 若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?

    2. (2) 若用餐的人数有90人,则这样的餐桌需要多少张?

  • 21. (2014·金华) 九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.

    根据统计图,解答下列问题:

    1. (1) 第三次成绩的优秀率是多少?并将条形统计图补充完整;
    2. (2) 已求得甲组成绩优秀人数的平均数 =7,方差 =1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?
  • 22. (2014·金华)



    【合作学习】



    如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y= (k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:

    ①该反比例函数的解析式是什么?

    ②当四边形AEGF为正方形时,点F的坐标是多少?

    1. (1) 阅读合作学习内容,请解答其中的问题;

    2. (2) 小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”

      针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.

  • 23. (2014·金华) 等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.

    1. (1) 若AE=CF;

      ①求证:AF=BE,并求∠APB的度数;

      ②若AE=2,试求AP•AF的值;

    2. (2) 若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.
  • 24. (2014·金华)

    如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.

    1. (1) 求该抛物线的函数解析式;

    2. (2) 已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.

      ①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;

      ②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息