当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2014年浙江省宁波市中考数学试卷

更新时间:2017-04-25 浏览次数:1067 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 19. (2014·宁波) 计算下列各题.
    1. (1) 化简:(a+b)2+(a﹣b)(a+b)﹣2ab;
    2. (2) 解不等式:5(x﹣2)﹣2(x+1)>3.
  • 20. (2014·宁波) 作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:

    1. (1) 求这7天日租车量的众数、中位数和平均数;
    2. (2) 用(1)中的平均数估计4月份(30天)共租车多少万车次;
    3. (3) 市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).
  • 21. (2014·宁波) 如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.

    1. (1) 求改直的公路AB的长;
    2. (2) 问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
  • 22. (2014·宁波)

    如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= ,反比例函数y= (k>0)的图象过CD的中点E.

    1. (1) 求证:△AOB≌△DCA;

    2. (2) 求k的值;

    3. (3) △BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.

  • 23. (2014·宁波) 如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.

    1. (1) 求二次函数的解析式;
    2. (2) 设二次函数的图象与x轴的另一个交点为D,求点D的坐标;
    3. (3) 在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
  • 24. (2014·宁波) 用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).

    A方法:剪6个侧面;    B方法:剪4个侧面和5个底面.

    现有19张硬纸板,裁剪时x张用A方法,其余用B方法.

    1. (1) 用x的代数式分别表示裁剪出的侧面和底面的个数;
    2. (2) 若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
  • 25. (2014·宁波) 课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.

    我们有多少种剪法,图1是其中的一种方法:

    定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.

    1. (1) 请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)
    2. (2) △ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;
    3. (3) 如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.
  • 26. (2014·宁波)

    木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:


    方案一:直接锯一个半径最大的圆;

    方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;

    方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;

    方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.

    1. (1) 写出方案一中圆的半径;

    2. (2) 通过计算说明方案二和方案三中,哪个圆的半径较大?

    3. (3) 在方案四中,设CE=x(0<x<1),圆的半径为y.

      ①求y关于x的函数解析式;

      ②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.

微信扫码预览、分享更方便

试卷信息