当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年高考文数真题试卷(新课标Ⅰ卷)

更新时间:2017-06-09 浏览次数:1707 类型:高考真卷
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.
二、填空题:本题共4小题,每小题5分,共20分.
三、解答题:共60分.解答应写出文字说明、证明过程或演算过程.
  • 17. (2017·新课标Ⅰ卷文) 记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6.

    1. (1) 求{an}的通项公式;

    2. (2) 求Sn , 并判断Sn+1 , Sn , Sn+2是否能成等差数列.

  • 18. (2017·新课标Ⅰ卷文) 如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.

    1. (1) 证明:平面PAB⊥平面PAD;

    2. (2) 若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为 ,求该四棱锥的侧面积.

  • 19. (2017·新课标Ⅰ卷文) 为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:

    抽取次序

    1

    2

    3

    4

    5

    6

    7

    8

    零件尺寸

    9.95

    10.12

    9.96

    9.96

    10.01

    9.92

    9.98

    10.04

    抽取次序

    9

    10

    11

    12

    13

    14

    15

    16

    零件尺寸

    10.26

    9.91

    10.13

    10.02

    9.22

    10.04

    10.05

    9.95

    经计算得 = xi=9.97,s= = =0.212, ≈18.439, (xi )(i﹣8.5)=﹣2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

    1. (1) 求(xi , i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).

    2. (2) 一天内抽检零件中,如果出现了尺寸在( ﹣3s, +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

      (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?

      (ⅱ)在( ﹣3s, +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)

      附:样本(xi , yi)(i=1,2,…,n)的相关系数r= ≈0.09.

  • 20. (2017·新课标Ⅰ卷文) 设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.

    1. (1) 求直线AB的斜率;

    2. (2) 设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.

  • 21. (2017·新课标Ⅰ卷文) 已知函数 f(x)=ex(ex﹣a)﹣a2x.

    1. (1) 讨论 f(x)的单调性;

    2. (2) 若f(x)≥0,求a的取值范围.

四、选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

微信扫码预览、分享更方便

试卷信息