当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

云南省保山市2020届九年级上学期数学期中考试试卷

更新时间:2019-12-22 浏览次数:312 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 15. (2019九上·保山期中) 用适当的方法解下列一元二次方程:
    1. (1)
    2. (2)
  • 16. (2019九上·保山期中) 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).

    1. (1) 请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;并写出A1、B1、C1三点的坐标.
    2. (2) 求出(1)中C点旋转到C1点所经过的路径长(结果保留π).
  • 17. (2022九上·五台期中) 关于 的一元二次方程
    1. (1) 当 时,利用根的判别式判断方程根的情况;
    2. (2) 若方程有两个相等的实数根,写出一组满足条件的 的值,并求此时方程的根.
  • 18. (2019九上·保山期中) 为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.

    1. (1) 求y与x之间的函数关系式,并写出自变量x的取值范围;
    2. (2) 当x为何值时,满足条件的绿化带的面积最大.
  • 19. (2019九上·保山期中) 如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.

    1. (1) 求证:CE为⊙O的切线;
    2. (2) 判断四边形AOCD的形状,并说明理由.
  • 20. (2019九上·保山期中) 四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

    1. (1) 求证:△ADE≌△ABF;
    2. (2) 填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;
    3. (3) 若BC=8,DE=6,求△AEF的面积.
  • 21. (2019九上·保山期中) 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是20元.调研发现:

    ①盆景每增加1盆,盆景的平均每盆利润减少2元,每减少1盆,盆景的平均每盆利润增加2元;

    ②花卉的平均每盆利润始终不变.

    小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加 盆,第二期盆景与花卉售完后的利润分别为 (单位:元)

    1. (1) 用含 的代数式分别表示 .
    2. (2) 当 取何值时,第二期培植的盆录与花卉售完后获得的总利润 最大,最大总利润是多少?
  • 22. (2019九上·保山期中) 已知二次函数 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.
    1. (1) 不等式b+2c+8≥0是否成立?请说明理由;
    2. (2) 设S是△AMO的面积,求满足S=9的所有点M的坐标.
  • 23. (2020九上·长沙月考) 如图,在直角坐标系中,⊙M经过原点O(0,0),点A( ,0)与点B(0,- ),点D在劣弧 上,连结BD交x轴于点C,且∠COD=∠CBO.

    1. (1) 求⊙M的半径;
    2. (2) 求证:BD平分∠ABO;
    3. (3) 在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.

微信扫码预览、分享更方便

试卷信息