当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春市2020年中考数学二模考试试卷

更新时间:2020-04-09 浏览次数:336 类型:中考模拟
一、选择题(本大题共8小题,每小题3分,共24分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共10小题,共78分)
  • 16. (2020·长春模拟) 甲、乙两人做摸球游戏,在不透明的口袋里放人大小相同的两个黑球和两个白球,甲摸出两个球后放回并搅匀,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?
  • 17. (2020·长春模拟) 在大城市,很多上班族选择“低碳出行”、电动车和共享单车成为他们的代步工具。某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体.已知他骑电动车的速度是骑共享单车的1.5倍,求他骑共享单车从家到单位上班花费的时间。
  • 18. (2020·长春模拟) 中国古代有二十四节气歌:“春雨惊春清谷天,夏满芒夏暑相连,秋处露秋寒霜降,冬雪雪冬小大寒“它是为便于记忆我国古时历法中二十四节气而编成的小诗歌。流传至今,其中第一个”冬“是指立冬,为冬季的开始,但在气象学上的入冬日有是严格定义的,即日平均气温连续五天低于10℃,才算是进入冬天,其中5天中的第一天即为入冬日。

    日平均气温是指一天24小时的平均值,气象上通常用一天中的2时、8时、14时、20时4个时刻的气温的平均值作为这一天的日平均气温(即4个气温相加除以4),结果保留一位小数。

    下表是长春市某年10月6日至10月12日的气温纪录及日平均气温(单位:℃)

    时间

    2时

    8时

    14时

    20时

    平均气温

    10月6日

    2

    8

    18

    13

    10.3

    10月7日

    2

    7

    15

    10

    a

    10月8日

    2

    7

    14

    9

    8.0

    10月9日

    2

    6

    13

    9

    7.5

    10月10日

    3

    5

    9

    6

    5.8

    10月11日

    2

    5

    13

    9

    7.3

    10月12日

    4

    8

    17

    13

    10.5

    根据以上材料解答下列问题:

    1. (1) 求出10月7日的日平均气温a;
    2. (2) 采用适当的统计图将这7天的日平均气温的变化情况表示出来;
    3. (3) 请指出这一年的哪一天是长春市在气象学意义上的入冬日。
  • 19. (2020·黄冈模拟) 如图,△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D。


    1. (1) 求证:CD=CB。
    2. (2) 如果⊙O的半径为2,求AC的长。
  • 20. (2020·长春模拟) 定义:我们把三边比为1: 的三角称为尾翼三角形。

    1. (1) 请你在下面5×5和2×7的网格中分别画出面积最大的格点尾翼三角形。
    2. (2) 尾翼三角形的最大角为度。
  • 21. (2020·长春模拟) 周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.

    1. (1) 求a、b的值.
    2. (2) 求甲追上乙时,距学校的路程.
    3. (3) 当两人相距500米时,直接写出t的值是.
  • 22. (2020·长春模拟) 阅读下列材料,完成相应的任务。

    数学活动课上,老师提出如下问题:

    如图①,在四边形ABCD中,AB⊥BC,DC⊥BC,AB=2,DC=4,BC=8,点P为BC边上的动点,求当BP的值是多少时,AP+DP有最小值,最小值是多少。

    小丽和小明对老师提出的问题进行了合作探究:

    小丽:设BP=x,则CP=8-x,

    根据勾股定理,可得AP+DP=

    但没有办法继续求解。

    小明:利用轴对称作图,如图②,

    作点A关于直线BC的对称点A',连接A'D,与BC交于点P,

    根据两点之间线段最短,将求AP+DP的最小值转化为求线段AD的长。

    由△A‘BP∽△DCP,得

    所以BP=

    过点A'作A'H⊥DC,交DC的延长线于点H,

    再由勾股定理,可得A'D= =10。

    所以当BP= 时,AP+DP有最小值,最小值为10。

    图③

    任务:

    1. (1) 类比探究:

      对于函数y= ,当x=时,y有最小值,最小值为

    2. (2) 应用拓展:如图③,若点D在BC上运动,AD上BC,AD=3,BC=5。连接AB,AC, 求△ABC周长的最小值。
  • 23. (2020·长春模拟) 综合与实践

    1. (1) 【动手操作】任意一个四边形ABCD通过剪裁,都可以拼接成一个三角形,方法如下:

      如图1.点E、F、G、H分别是边AB、BC、CD、DA的中点.连结EH,点P是线段EH的中点,连结PF、PG.沿线段EH、PF,PG剪开,将四边形ABCD分成①、②、③、④四部分,按如图所示的方式即可拼成一个无缝隙也不重叠的三角形P'MN。

      在拼接过程中用到的图形的变换有

      A.轴对称   B.平移  C.中心对称   D.位似

    2. (2) 【性质探究】如图3,连结EF'、F'G'、G'H,判断四边形EF'G'H的形状,并说明理由。
    3. (3) 【综合运用】若三角形P'MN是一个边长为4的正三角形,则四边形ABCD周长的最小值为
  • 24. (2020·长春模拟) 如图①,在平面直角坐标系中,当线段AB与坐标轴不垂直时,以线段AB为斜边作Rt△ABC,且边BC⊥x轴,则称AC+BC的值为线段AB的直角距离,记作L(AB);当线段AB与坐标轴垂直时,线段AB的直角距离不存在。


    1. (1) 在平面直角坐标系中,A(1,4),B(4,2),求L(AB)。
    2. (2) 在平面直角坐标系中.点A与坐标原点重合.点B(x,y),且L(AB)=2。

      ①当点B(x:y)在第一象限时,易知AC=x,BC=y,由AC+BC=L(AB),可得y与x之间的函数关系式为,其中x的取值范围是

    3. (3) 在图②中画出这个函数的图象。

      ②请模仿①的思考过程,分别探究点B在其它象限的情形,仍然在图②中分别画出点B在二、三、四象限时,y与x的函数图象。(不要求写出探究过程)

    4. (4) 在平面直角坐标系中,点A(1,1),点B在抛物线y=a(x-h)2+5上,且2≤L(AB)≤4。

      ①a= 时,直接写出h的取值范围。

      ②当h=0,且△ABC是等腰直角三角形时,直接写出a的取值范围。

微信扫码预览、分享更方便

试卷信息