①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分).
(Ⅰ)请指出图中曲线C1、C2分别对应的函数;
(Ⅱ)请判断以下两个结论是否正确,并说明理由.
①当x∈(﹣∞,﹣1)时, •2x< x2;
②x2∈(1,2).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递减区间.
(Ⅰ)用含θ的式子表示DC,OB的长‘
(Ⅱ)若此人布置1m2的宣传区域需要花费40元,试将S表示为θ的函数,并求布置此矩形宣传栏最多要花费多少元钱?(精确到0.01)
(参考数据: ≈1.732, ≈1.414)
(Ⅰ)若f1(1)=3,求f1( )的值;
(Ⅱ)若fk(x)为定义在R上的奇函数,且a>1,是否存在实数λ,使得fk(cos2x)+fk(2λsinx﹣5)<0对任意x∈[0, ]恒成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.