当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省太原市2019-2020学年八年级下学期数学第二次月考...

更新时间:2020-07-21 浏览次数:265 类型:月考试卷
一、选择题
二、填空题
三、解答题
  • 16. (2020八下·太原月考) 将下列各式因式分解.
    1. (1) x3y2-xy4
    2. (2) m2n-mn2+ n3
  • 17. (2020八下·太原月考) 解不等式组,并写出它的整数解。

  • 18. (2020八下·太原月考) 如图,五边形各顶点的坐标分别为A(-4,4),B(-5,3),C(-4,1),D(-2,2),E(-2,3),将五边形先向右平移6个单位长度,再向上平移3个单位长度,得到新五边形A'B'C'D'E',点A,B,C,D,E分别对应点A',B',C',D',E',

    1. (1) 画出平移后的新五边形并标明字母;
    2. (2) 如果将新五边形A'B'C'D'E'看成是由原五边形ABCDE经过一次平移得到的,请直接写出这一平移的平移方向和平移距离。
  • 19. (2020八下·太原月考) 利用因式分解证明:365-68能被210整除。
  • 20. (2020八下·太原月考) 如图,已知∠DAC是△ABC的一个外角。

    1. (1) 求作BC边上的高AE及∠DAC的角平分线AF;(尺规作图,不写作法,保留作图痕迹并标明字母)
    2. (2) 在(1)的基础上,若AE⊥AF,求证:AB=AC。
  • 21. (2020八下·太原月考) 对多项式(a2-4a+2)(a2-4a+6)+4进行因式分解时,小亮先设a2-4a=b,代

    入原式后得:

    原式=(b+2)(h+6)+4

    =b2+8b+16

    =(b+4)2

    =(a2-4a+4)2

    1. (1) 小亮在因式分解时巧妙运用了以下那种数学思想:__________;
      A . 整体换元思想 B . 数形结合思想 C . 分类讨论思想
    2. (2) 请指出上述因式分解存在的问题并直接写出正确结果;
    3. (3) 请参考以上方法对多项式(4a2+4a)(4a2+4a+2)+1进行因式分解。
  • 22. (2020八下·太原月考) 保护环境,人人有责.某小区积极响应政策,为小区安装温馨提示牌和分类垃圾箱,已知购买3个垃圾箱和4个提示牌共需要640元,购买2个垃圾箱和5个提示牌共需要520元。
    1. (1) 求垃圾箱与温馨提示牌的单价各是多少?
    2. (2) 若该小区计划安放温馨提示牌与垃圾箱共85个,垃圾箱不少于53个、总费用不超过10000元,则共有几种购买方案?(请全部写出)
    3. (3) (2)中哪种方案的花费最少?最少是多少元?

  • 23. (2020八下·太原月考) 综合与实践

    材料一:“转化思想”是几何变换中常用的思想,例如将图形进行旋转变换,实现图形位置的“转化”,把一般情形转化为特殊情形,使问题化难为易,它是一种以变化的、运动的观点来处理孤立的、离散问题的思想。

    材料二:皮埃尔·德·费马(右图),17世纪法国律师和业余数学家,被誉为“业余数学家之王”。1638年勒·笛卡儿邀请费马思考关于三个顶点距离为定值的问题,费马经过思考并由此推出费马点的相关结论。

    定义:若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点。如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,PA+PB+PC的值最小。

    1. (1) 如图2,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数,为了解决本题,小林利用“转化”思想,将△ABP绕顶点A旋转到△ACP'处,连接PP',此时△ACP'≌△ABP,这样就可以通过旋转变换, 将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=
    2. (2) 如图3,在图1的基础上延长BP,在射线BP上取点D,E,连接AE,AD,使AD=AP,∠DAE=∠PAC,求证:BE=PA+PB+PC;
    3. (3) 如图4,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=1,点P为Rt△ABC的费马点,连接AP,BP,CP,请直接写出PA+PB+PC的值。

微信扫码预览、分享更方便

试卷信息