当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省南阳市新野县2016-2017学年七年级下学期数学期末...

更新时间:2017-10-19 浏览次数:1379 类型:期末考试
一、选择题
二、填空题
三、解答题
  • 17. (2017七下·新野期末) 解不等式组 ,并写出该不等式组的最大整数解.
  • 18. 如图所示,一个四边形纸片ABCD,∠D=90°把纸片按如图所示折叠,使点B落在AD上的B′处,AE是折痕.


    1. (1) 若B′E∥CD,求∠B的度数.
    2. (2) 在(1)的条件下,如果∠C=128°,求∠EAB的度数.
  • 19. (2017七下·新野期末) 某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.
    1. (1) 该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?
    2. (2) 因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套?
  • 20. (2017七下·新野期末) 如图,在Rt△ABC中,∠ACB=90°,点D在AB上,将△BCD绕点C按顺时针方向旋转90°后得△ECF.


    1. (1) 补充完成图形;
    2. (2) 若EF∥CD,求证:∠BDC=90°.
  • 21. 我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.

    如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?

    问题解决:

    猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?

    验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+ y=360,整理得:2x+3y=8,

    我们可以找到方程的正整数解为

    结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.

    猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.

  • 22. (2017七下·新野期末) 如图,已知:△ABC在正方形网格中


    1. (1) 请画出△ABC向左平移5个单位长度后得到的△A1B1C1
    2. (2) 请画出△ABC关于点O对称的△A2B2C2
    3. (3) 在直线MN上求作一点P,使△PAB的周长最小,请画出△PAB.
  • 23. (2017七下·新野期末) 综合题如图①,∠DCE=∠ECB=α,∠DAE=∠EAB=β,∠D=30°,∠B=40°


    1. (1) ①用α或β表示∠CNA,∠MPA,∠CNA=,∠MPA=

      ②求∠E的大小.

    2. (2) 如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠E与∠B,∠D之间是否存在某种等量关系?若存在,写出结论,说明理由;若不存在,说明理由.

微信扫码预览、分享更方便

试卷信息