当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市2021届九年级上学期数学第一次月考试卷

更新时间:2024-07-13 浏览次数:143 类型:月考试卷
一、选择题(本题共有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选,错选,均不得分)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本题有8小题,第17题8分, 第18~20题每题8分,第21、22题10分23题12分,第24题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
  • 17. (2020九上·温州月考) 求下列二次函数图象的开口方向、顶点坐标和对称轴:
    1. (1) y=-x2+2x-3             
    2. (2) y=x2-2x+
  • 18. (2020九上·温州月考) 一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意摸出1个球是红球的概率为 
    1. (1) 袋中绿球的个数是个.
    2. (2) 从箱子中任意摸出一个球是黄球的概率是多少?
    3. (3) 第一次从袋中任意摸出1球,放回,搅匀,第二次再任意摸出1球,求两次都摸到红球的概率(用列表法或树状图表示).
  • 19. (2020九上·温州月考) 如图,有长为24米的篱笆,一面利用墙(图中的阴影部分就是墙,墙的最大可利用长度为9米),围成中间隔有一道篱笆的长方形花圃. 花圃的宽ABx米,面积为S平方米.
     
       
    1. (1) 求Sx的函数关系式及自变量x的取值范围;
    2. (2) 当x为多少时,围成的花圃面积最大?最大面积是多少?
  • 20. (2020九上·温州月考) 从3名男生和2名女生中随机抽取2022年杭州亚运会志愿者.求下列事件的概率:
    1. (1) 随机抽取1名,恰好是女生;
    2. (2) (用列表法或树状图表示)随机抽取2名,恰好是1名男生和1名女生.
  • 21. (2020九上·温州月考) 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).

    设每件商品的售价上涨x 元( 为正整数),每个月的销售利润为 y元.

    1. (1) 求yx 的函数关系式并直接写出自变量的取值范围;
    2. (2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
    3. (3) 为了使顾客尽量满意,每件商品的售价定为多少元时,每个月的利润恰为2200元?
  • 22. (2020九上·温州月考) 如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.

    1. (1) 用画树状图或列表法求乙获胜的概率;
    2. (2) 这个游戏规则对甲、乙双方公平吗?请判断并说明理由.
  • 23. (2020九上·温州月考) 如图① ,已知抛物线 (a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C

    1. (1) 求抛物线的表达式;
    2. (2) 设抛物线的对称轴与x轴交于点N ,问在对称轴上是否存在点P , 使△CNP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    3. (3) 如图②,若点E为第三象限抛物线上一动点,连结BECE , 求四边形BOCE面积的最大值,并求此时E点的坐标.
  • 24. (2020九上·温州月考) 如图,抛物线ynx2-11nx+24nn<0)与x轴交于BC两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.

    1. (1) 点B的坐标为,点C的坐标为
    2. (2) 连结OA , 若OAAC

      ① 求n的值;

      ② 若点D为抛物线对称轴上一点,连结ADBD , 则当△AOB与△ADB面积相等时,求出所有满足条件的点D的坐标.

微信扫码预览、分享更方便

试卷信息