当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省宁波市鄞州区七校联考2020-2021学年九年级上学期...

更新时间:2020-11-15 浏览次数:345 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 17. (2020九上·寻乌期末) 在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:

    ①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用 表示)。

    ②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用 表示)。

    1. (1) 张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是
    2. (2) 若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.
  • 18. (2020九上·鄞州期中) 已知二次函数y=x2-2x-3.
    1. (1) 求图象的开口方向、对称轴、顶点坐标;
    2. (2) 求图象与x轴的交点坐标,与y轴的交点坐标;
    3. (3) 当x为何值时,y随x的增大而增大?
  • 19. (2020九上·鄞州期中) 平面上有3个点的坐标:  
    1. (1) 在A,B,C三个点中任取一个点,这个点既在直线 上又在抛物线上 上的概率是多少?
    2. (2) 从A,B,C三个点中任取两个点,求两点都落在抛物线 上的概率.
  • 20. (2020九上·鄞州期中) 新定义:如果二次函数 的图象经过点(-1,0),那么称此二次函数的图象为“定点抛物线”
    1. (1) 试判断二次函数 的图象是否为“定点抛物线”
    2. (2) 若定点抛物线 与x轴只有一个公共点,求 的值.
  • 21. (2021九上·环江期中) 一名男生推铅球,铅球的行进高度 (单位: )与水平距离 (单位: )之间的关系为 ,铅球行进路线如图.

    1. (1) 求出手点离地面的高度.
    2. (2) 求铅球推出的水平距离.
    3. (3) 通过计算说明铅球的行进高度能否达到4 .
  • 22. (2020九上·鄞州期中) 某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量y与销售单价x之间的关系可以近似地看作一次函数:y=﹣5x+150,物价部门规定这种笔记本每本的销售单价不得高于18元.
    1. (1) 当每月销售量为70本时,获得的利润为多少元;
    2. (2) 该文具店这种笔记本每月获得利润为W元,求每月获得的利润W元与销售单价x之间的函数关系式,并写出自变量的取值范围;
  • 23. (2020九上·鄞州期中) 定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k的关联直线.

    1. (1) 求抛物线y=x2+6x﹣1的关联直线;
    2. (2) 已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;
    3. (3) 如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.
  • 24. (2020九上·鄞州期中) 如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

    1. (1) 求抛物线的函数表达式.
    2. (2) 当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
    3. (3) 保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

微信扫码预览、分享更方便

试卷信息