当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省信阳市浉河区2020届九年级上学期数学期末考试试卷

更新时间:2021-01-20 浏览次数:167 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 16. (2020九上·浉河期末) 解下列方程:
    1. (1) x2﹣2x﹣2=0;
    2. (2) (x﹣1)(x﹣3)=8.
  • 17. (2020九上·浉河期末) 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣1,2),C(﹣2,4).

    ( 1 )将△ABC向右平移4个单位后得到△A1B1C1 , 请画出△A1B1C1 , 并写出点B1的坐标;

    ( 2 )△A2B2C2和△A1B1C1关于原点O中心对称,请画出△A2B2C2 , 并写出点C2的坐标;

    ( 3 )连接点A和点B2 , 点B和点A2 , 得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由).

  • 18. (2020九上·浉河期末) 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.

    1. (1) 随机掷一次骰子,则棋子跳动到点C处的概率是
    2. (2) 随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.
  • 19. (2020九上·浉河期末) 如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.

    1. (1) 求证:△BOQ≌△POQ;
    2. (2) 若直径AB的长为12.

      ①当PE=时,四边形BOPQ为正方形;

      ②当PE=时,四边形AEOP为菱形.

  • 20. (2020九上·浉河期末) 参照学习函数的过程方法,探究函数 的图象与性质,因为 ,即 ,所以我们对比函数 来探究列表:

    -4

    -3

    -2

    -1

    1

    2

    3

    4

    1

    2

    4

    -4

    -2

    -1

    2

    3

    5

    -3

    -2

    0

    描点:在平面直角坐标系中以自变量 的取值为横坐标,以 相应的函数值为纵坐标,描出相应的点如图所示:

    1. (1) 请把 轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;
    2. (2) 观察图象并分析表格,回答下列问题:

      ①当 时, 的增大而;(“增大”或“减小”)

      的图象是由 的图象向平移个单位而得到的;

      ③图象关于点中心对称.(填点的坐标)

    3. (3) 函数 与直线 交于点 ,求 的面积.
  • 21. (2021九上·平昌期中) 某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.
    1. (1) 求每次下降的百分率;
    2. (2) 若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?
  • 22. (2020九上·浉河期末) 在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.

    1. (1) 如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:
    2. (2) 点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.

      ①如图b,猜想并证明线段OM和线段ON之间的数量关系;

      ②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).

  • 23. (2020九上·浉河期末) 如图,若b是正数.直线l:y=b与y轴交于点A,直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.

    1. (1) 若AB=6,求b的值,并求此时L的对称轴与a的交点坐标;
    2. (2) 当点C在l下方时,求点C与l距离的最大值;
    3. (3) 设x0≠0,点(x0 , y1),(x0 , y2),(x0 , y3)分别在l,a和L上,且y3是y1 , y2的平均数,求点(x0 , 0)与点D间的距离;
    4. (4) 在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.

微信扫码预览、分享更方便

试卷信息