无
*注意事项:
执行如图所示的程序框图,如果输入a=2,那么输出的a值为( )
①当m=时,a5=2
②若m= , 则数列{an}是周期为3的数列;
③对若a2=4,则m可以取3个不同的值;
④∃m∈Q且m∈[4,5],使得数列{an}是周期为6.
其中真命题的个数是( )
如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,AC=2,则BD等于
某学校为准备参加市运动会,对本校高一、高二两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下定义为“不合格”.
(1)如果从所有运动员中用分层抽样抽取“合格”与“不合格”的人数共10人,问就抽取“合格”人数是多少?
(2)若从所有“合格”运动员中选取2名,用X表示所选运动员来自高一队的人数,试写出X的分布图,并求X的数学期望.
(1)若acosB+bcosA=csinC,求角B的大小;
(2)记g(λ)=|+λ|,若||=||=3,试求g(λ)的最小值.
如图所示,四棱锥S﹣ABCD的底面ABCD为等腰梯形,AB∥CD,对角线AC与BD交于点O,OA=3,OD=1,CD= , SO⊥底面ABCD.
求证:SA⊥BD
(1)求a2 , a3 , a4及b2 , b3 , b4;由此归纳出{an},{bn}的通项公式,并证明你的结论.
(2)若cn=log2(),Sn=c1+c2+…+cn , 试问是否存在正整数m,使Sm≥5,若存在,求最小的正整数m.
如图所示,已知椭圆C1:+=1,C2:+=1(a>b>0)有相同的离心率,F(﹣ , 0)为椭圆C2的左焦点,过点F的直线l与C1、C2依次交于A、C、D、B四点.
(1)求椭圆C2的方程;
(2)求证:无论直线l的倾斜角如何变化恒有|AC|=|DB|
(1)若a=1,求f(x)的最小值;
(2)若对任意x≥1,不等式f(x)≤g(x)恒成立,求实数a的取值范围;
微信扫码预览、分享更方便
详情