题库组卷系统-专注K12在线组卷服务
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
试题
试卷
试题
在线咨询
当前:
高中数学
小学
语文
数学
英语
科学
道德与法治
初中
语文
数学
英语
科学
物理
化学
历史
道德与法治
地理
生物学
信息技术
历史与社会(人文地理)
社会法治
高中
语文
数学
英语
物理
化学
历史
思想政治
地理
生物学
信息技术
通用技术
首页
手动组卷
章节同步选题
知识点选题
智能组卷
章节智能组卷
知识点智能组卷
细目表组卷
试卷库
同步专区
备考专区
高考专区
智能教辅
在线测评
测
当前位置:
高中数学
/
备考专区
试卷结构:
课后作业
日常测验
标准考试
|
显示答案解析
|
全部加入试题篮
|
平行组卷
试卷细目表
发布测评
在线自测
试卷分析
收藏试卷
试卷分享
下载试卷
下载答题卡
江苏省徐州市2019-2020学年高二下学期数学期中考试试卷
下载试题
平行组卷
收藏试卷
在线测评
发布测评
在线自测
答题卡下载
更新时间:2021-04-16
浏览次数:99
类型:期中考试
试卷属性
副标题:
无
*注意事项:
无
江苏省徐州市2019-2020学年高二下学期数学期中考试试卷
更新时间:2021-04-16
浏览次数:99
类型:期中考试
考试时间:
分钟
满分:
分
姓名:
____________
班级:
____________
学号:
____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
一、单选题
1.
(2020高二下·徐州期中)
若函数
,则
在
处的导数为( )
A .
B .
2
C .
3
D .
答案解析
收藏
纠错
+ 选题
2.
(2021高一下·锦州期末)
复数
满足
,则
( )
A .
B .
C .
D .
2
答案解析
收藏
纠错
+ 选题
3.
(2020高二下·徐州期中)
下列求导运算正确的是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
4.
(2020高二下·徐州期中)
若函数
在
时取得极值,则
( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
5.
(2021高二下·洛阳月考)
已知函数
的图象如图所示,则其导函数
的图象可能是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
6.
(2020高二下·徐州期中)
已知函数
,则
( )
A .
-4
B .
4
C .
-2
D .
2
答案解析
收藏
纠错
+ 选题
7.
(2020高二下·徐州期中)
若函数
在区间
上是单调减函数,则实数
的取值范围是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
8.
(2020高二下·徐州期中)
设
是定义在R上的奇函数,
,当
时,有
恒成立,则
的解集为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
二、多选题
9.
(2020高二下·徐州期中)
已知不等式
对任意的
恒成立,则满足条件的整数
的可能值为( )
A .
-4
B .
-3
C .
-2
D .
-1
答案解析
收藏
纠错
+ 选题
10.
(2020高二下·徐州期中)
已知函数
,下列说法中正确的有( )
A .
函数
的极大值为
,极小值为
B .
当
时,函数
的最大值为
,最小值为
C .
函数
的单调减区间为
D .
曲线
在点
处的切线方程为
答案解析
收藏
纠错
+ 选题
11.
(2020高二下·徐州期中)
若函数
在
上单调递减,则称
为
函数,下列函数中为
函数的是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
12.
(2020高二下·徐州期中)
设函数
,
,给定下列命题,其中是正确命题的是( )
A .
不等式
的解集为
B .
函数
在
单调递增,在
单调递减
C .
当
时,
恒成立,则
D .
若函数
有两个极值点,则实数
答案解析
收藏
纠错
+ 选题
三、填空题
13.
(2020高二下·徐州期中)
函数
的单调递减区间为
.
答案解析
收藏
纠错
+ 选题
14.
(2020高二下·徐州期中)
若函数
在区间
上不单调,则实数a的取值范围为
.
答案解析
收藏
纠错
+ 选题
15.
(2020高二下·徐州期中)
已知函数
,若函数
有四个不同的零点,则
的取值范围为
答案解析
收藏
纠错
+ 选题
16.
(2020高二下·徐州期中)
已知函数
,
(
),若曲线
与曲线
相交,且在交点处有相同的切线,则
,切线的方程为
(直线的方程写成一般式).
答案解析
收藏
纠错
+ 选题
四、解答题
17.
(2021高一下·湖州期中)
已知复数
,其中
为虚数单位.若
满足下列条件,求实数
的值:
(1)
为实数;
(2)
为纯虚数;
(3)
在复平面内对应的点在直线
上.
答案解析
收藏
纠错
+ 选题
18.
(2020高二下·徐州期中)
已知函数
.
(1) 求函数
的单调区间;
(2) 求函数
在
上的最大值和最小值.
答案解析
收藏
纠错
+ 选题
19.
(2020高二下·徐州期中)
已知函数
(
).
(1) 若函数
在
处取得极小值
,求实数
的值;
(2) 讨论函数
的单调性.
答案解析
收藏
纠错
+ 选题
20.
(2020高二下·徐州期中)
如图,已知海岛
与海岸公路
的距离
为
,
,
间的距离为
,从
到
,需要先乘船至海岸公路
上的登陆点
,船速为
,再乘汽车至
,车速为
.设
.
(1) 用
表示从海岛
到
所用的时间
,并写出
的取值范围;
(2) 登陆点
应选在何处,能使从
到
所用的时间最少?
答案解析
收藏
纠错
+ 选题
21.
(2020高二下·徐州期中)
已知函数
(
).
(1) 若
在其定义域内单调递增,求实数
的取值范围;
(2) 若
,且
有两个极值点
,其中
,求
的取值范围.
答案解析
收藏
纠错
+ 选题
22.
(2020高二下·徐州期中)
已知函数
,
.
(1) 若
,求函数
在
上的最小值;
(2) 若不等式
在
上恒成立,求实数
的取值范围.
答案解析
收藏
纠错
+ 选题
微信扫码预览、分享更方便
详情
试题分析
(总分:
0
)
总体分析
题量分析
难度分析
知识点分析
试卷信息