当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省新乡市2021届高三理数第二次模拟考试试卷

更新时间:2021-05-28 浏览次数:132 类型:高考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2021·新乡模拟) 分别为锐角 内角A, 的对边.已知 .
    1. (1) 求
    2. (2) 若 ,试问 的值是否可能为5?若可能,求 的周长;若不可能,请说明理由.
  • 18. (2021·新乡模拟) 某行业主管部门为了解本行业疫情过后恢复生产的中小企业的生产情况,随机调查了120个企业,得到这些企业第二季度相对于前一年第二季度产值增长率 的频数分布表.

    y的分组

    企业数

    30

    24

    40

    16

    10

    1. (1) 估计这些企业中产值负增长的企业比例(用百分数表示);
    2. (2) 估计这120个企业产值增长率的平均数(同一组中的数据用该组区间的中点值代表);
    3. (3) 以表中 的分组中各组的频率为概率,某记者要从当地本行业所有企业中任意选取两个企业做采访调查.若采访的企业的增长率 ,则采访价值为1;采访的企业的增长率 ,则采访价值为2;采访的企业的增长率 ,则采访价值为3.设选取的两个企业的采访价值之和为 ,求 的分布列及数学期望.
  • 19. (2021·新乡模拟) 已知在三棱柱 中, .

    1. (1) 证明: 平面
    2. (2) 若 ,求二面角 的余弦值.
  • 20. (2021·新乡模拟) 已知函数
    1. (1) 若曲线 处的切线与 轴垂直,求 的单调区间;
    2. (2) 若对任意 ,不等式 恒成立,求 的取值集合.
  • 21. (2021·新乡模拟) 已知椭圆 的左、右顶点分别为 上不同于 的动点,直线 的斜率 满足 的最小值为-4.
    1. (1) 求 的方程;
    2. (2) 为坐标原点,过 的两条直线 满足 ,且 分别交 .试判断四边形 的面积是否为定值?若是,求出该定值;若不是,说明理由.
  • 22. (2021·新乡模拟) 在直角坐标系 中,曲线 的参数方程为 为参数),直线 .以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.
    1. (1) 写出曲线 的普通方程及直线 的极坐标方程;
    2. (2) 直线 与曲线 和直线 分别交于 均异于点 )两点,求 的取值范围.
  • 23. (2021·新乡模拟) 已知函数
    1. (1) 求不等式 的解集;
    2. (2) 记 的最小值为 ,若关于 的不等式 有解,求 的取值范围.

微信扫码预览、分享更方便

试卷信息