当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省成都市龙泉驿区2020-2021学年七年级上学期数学期...

更新时间:2022-01-29 浏览次数:135 类型:期末考试
一、单选题
二、填空题
  • 12. (2021七上·龙泉驿期末) 若方程3xk﹣2=7是一元一次方程,那么k=.
  • 13. (2021七上·龙泉驿期末) 已知m、n满足|2m+4|+(n﹣3)2=0,那么(m+n)2021的值为.
  • 14. (2021七上·龙泉驿期末) 如图,已知线段AB=10cm,点N在线段AB上,NB=2cm,M是AB中点,那么线段MN的长为.

  • 15. (2021七上·龙泉驿期末) 如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=.

  • 16. (2021七上·龙泉驿期末) 已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|c﹣b|+|a﹣c|=.

  • 17. (2021七上·龙泉驿期末) 将两块直角三角尺的直角顶点重合为如图所示的位置,为等腰直角三角形,当绕点顺时针旋转度(),时,则.

  • 18. (2021七上·龙泉驿期末) 我们将圆形钟面的时针和分针看作是两条从圆心发出的射线,当时针和分针夹角180度时形成一条直线,这条直线刚好平分钟面,我们将这样的时刻称为“平衡时刻”,如图,6点整就是一个平衡时刻,请问从0时到24时共有个平衡时刻.

  • 19. (2021七上·龙泉驿期末) 将长为2,宽为a的长方形纸片(1<a<2)如图那样折一下,剪下一个边长等于长方形的宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去.若第3次操作后,剩下的长方形恰好是正方形,则a的值为.

  • 20. (2021七上·龙泉驿期末) 十八世纪伟大的数学家欧拉证明了简单多面体中顶点数(v),面数(f),棱数(e)之间存在一个有趣的数量关系:v+f﹣e=2,这就是著名的欧拉定理.而正多面体,是指多面体的各个面都是形状大小完全相同的的正多边形,虽然多面体的家族很庞大,可是正多面体的成员却仅有五种,它们是正四面体、正六面体、正八面体、正十二面体和正二十面体,那今天就让我们来了解下这几个立体图形中的“天之骄子”:

    1. (1) 如图1,正四面体共有个顶点,条棱.
    2. (2) 如图2,正六面体共有个顶点,条棱.
    3. (3) 如图3是某个方向看到的正八面体的部分形状(虚线被隐藏),正八面体每个面都是正三角形,每个顶点处有四条棱,那么它共有个顶点,条棱.
    4. (4) 当我们没有正12面体的图形时,我们可以根据计算了解它的形状:我们设正12面体每个面都是正n(n≥3)边形,每个顶点处有m(m≥3)条棱,则共有12n÷2=6n条梭,有12n÷m=个顶点.欧拉定理得到方程:+12﹣6n=2,且m,n均为正整数,

      去掉分母后:12n+12m﹣6nm=2m,

      将n看作常数移项:12m﹣6nm﹣2m=﹣12n,

      合并同类项:(10﹣6n)m=﹣12n,

      化系数为1:m=

      变形:

      .

      分析:m(m≥3),n(n≥3)均为正整数,所以是正整数,所以n=5,m=3,即6n=30,.

      因此正12面体每个面都是正五边形,共有30条棱,20个顶点.

      请依据上面的方法或者根据自己的思考得出:正20面体共有条棱;个顶点.

三、解答题
  • 23. (2021七下·萧山期中) 解下列不等式(组),并把解集在数轴上表示出来
    1. (1)

    2. (2) .

  • 24. (2021七上·武功期中) 先化简,再求值:2(xy+5x2y)﹣3(3xy2﹣xy)﹣xy2 , 其中x,y满足x=﹣1,y=﹣.
  • 25. (2021七上·龙泉驿期末) 新学期,龙泉某中学开设了“家校心理疏导”课程.为了解学生的前置情况,从七年级学生中随机抽取了部分学生进行一次综合测试,测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D为不及格,将测试结果绘制成了如图所示的两幅不完整的统计图,根据统计图中的信息解答下列问题:

    1. (1) 本次抽样测试的人数是名;
    2. (2) 扇形统计图中表示A级的扇形圆心角α的度数是  ▲   , 并把条形统计图补充完整;
    3. (3) 该校七年级共有学生400名,如果全部参加这次测试,估计不及格的人数为多少?
  • 26. (2021七上·龙泉驿期末) 列方程解应用题:一件衬衫先按进价加价60元标价,再以8折出售,仍可获利24元,这件衬衫的进价是多少钱?

    审题:A:  ▲  .

    B:

    进价

    标价

    折数

    售价

    利润






    C:设  ▲  .

  • 27. (2022七上·广州期末) 列方程解应用题:某工有中、乙两车间各生产不同型号的产品,原计划乙车间人数比甲车间少100人,产品上市后,甲车间的产品成为爆款,于是又从乙车间调50人支援甲车间,这时甲车间的人数是乙车间剩余人数的3倍,求原来甲乙车间各有多少人?
  • 28. (2021七上·龙泉驿期末) 如图,已知数轴上两点A,B表示的数分别为﹣3,9,用符号“AB”来表示点A和点B之间的距离.

    1. (1) 若在数轴上存在一点C,使AC=3BC,求点C表示的数;
    2. (2) 在(1)的条件下,点C位于A,B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动,设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.
    3. (3) 在(1)的条件下,点C位于A,B两点之间.点A以1个单位/秒的速度沿着数轴的负方向运动,2秒后点B以2个单位/秒的速度也沿着数轴的负方向运动.点C以20单位/秒的速度与点A同时同向出发,当遇到A后,立即返回向B点运动;遇到B点后立即返回向A点运动:如此往返,直到B追上A时,C立即停止运动,那么点C从开始到停止运动,运动的路程是多少单位长度.

微信扫码预览、分享更方便

试卷信息