当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省大同市2021-2022学年九年级上学期期末数学试题

更新时间:2024-07-13 浏览次数:97 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 16. (2021九上·大同期末)                    
    1. (1) 计算:
    2. (2) 解方程:
  • 17. (2021九上·大同期末) 如图,一次函数的图象与反比例函数的图象相交于A(1,3),B(3,n)两点,与两坐标轴分别相交于点P,Q,过点B作于点C,连接OA.

    1. (1) 求一次函数和反比例函数的解析式;
    2. (2) 求四边形ABCO的面积.
  • 18. (2021九上·大同期末) 如图1是一间安装有壁挂式空调的卧室的一部分,如图2是该空调挂机的侧面示意图.已知空调挂机底部BC垂直于墙面CD,且当导风板所在的直线AE与竖直直线AB的夹角α为42°时,空调风刚好吹到床的外边沿E处,于点D,于点F.若 , 床铺 , 求空调机的底部位置距离床的高度CD.(结果精确到0.1m,参考数据:

  • 19. (2021九上·大同期末) 小军准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形,设其中一个正方形的边长为x cm,这两个正方形的面积之和为 . 请解答下列问题:
    1. (1) 另一个正方形的边长为cm(用含x的代数式表示);
    2. (2) 要使这两个正方形的面积之和等于 , 小军应怎么剪?
    3. (3) 小华对小军说:“这两个正方形的面积之和的最小值为 . ”他的说法符合题意吗?请说明理由.
  • 20. (2021九上·大同期末) 太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.

    1. (1) 把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;
    2. (2) 把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.
  • 21. (2021九上·大同期末) 请阅读下面材料,并完成相应的任务;

    阿基米德折弦定理

    阿基米德(Arehimedes,公元前287—公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.

    阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.

    阿基米德折弦定理:如图1,AB和BC是的两条弦(即折线ABC是圆的一条折弦), , M是的中点,则从点M向BC所作垂线的垂足D是折弦ABC的中点,即

    这个定理有很多证明方法,下面是运用“垂线法”证明的部分证明过程.

    证明:如图2,过点M作射线AB,垂足为点H,连接MA,MB,MC.

    ∵M是的中点,

    任务:

    1. (1) 请按照上面的证明思路,写出该证明的剩余部分;
    2. (2) 如图3,已知等边三角形ABC内接于 , D为上一点,于点E, , 连接AD,则的周长是

  • 22. (2021九上·大同期末) 综合与实践

    问题情境:

    数学活动课上,同学们将绕点A顺时针旋转得到 , 点落在边AB上,连接 , 过点于点D.

    特例分析:

    1. (1) 如图1,若点D与点A重合,请判断线段AC与BC之间的数量关系,并说明理由;

      探索发现:

    2. (2) 如图2,若点D在线段CA的延长线上.且 , 请判断线段AD与之间的数最关系,并说明理由.
  • 23. (2021九上·大同期末) 综合与探究

    如图,已知抛物线与x轴相交于点A,B(点B在点A的右侧),与y轴相交于点C,其顶点为点D,连接AC,BC.

    1. (1) 求点A,B,D的坐标;
    2. (2) 设抛物线的对称轴DE交线段BC于点E,P为第四象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F.若四边形DEFP为平行四边形,求点P的坐标;
    3. (3) 设点M是线段BC上的一个动点,过点M作 , 交AC于点N.点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t()秒,直接写出当t为何值时,为等腰直角三角形.

微信扫码预览、分享更方便

试卷信息