当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

上海市浦东新区2021-2022学年高二上学期数学期末考试试...

更新时间:2022-03-11 浏览次数:139 类型:期末考试
一、填空题
二、单选题
  • 13. (2021高二上·浦东期末) 下列调查方式合适的是(    )
    A . 为了了解一批炮弹的杀伤半径,采用普查的方式 B . 为了了解一批玉米种子的发芽率,采用普查的方式 C . 为了了解一条河流的水质,采用抽查的方式 D . 为了了解一个寝室的学生(共5个人)每周体育锻炼的时间,采用抽查的方式
  • 14. (2021高二上·浦东期末) 如果一个角的两边和另一个角的两边分别平行,那么这两个角(    )
    A . 相等 B . 互补 C . 相等或互补 D . 互余
  • 15. (2021高二上·浦东期末) 军训时,甲、乙两名同学进行射击比赛,共比赛10场,每场比赛各射击四次,且用每场击中环数之和作为该场比赛的成绩.数学老师将甲、乙两名同学的10场比赛成绩绘成如图所示的茎叶图,并给出下列三个结论:


    (1)甲的成绩的极差是29;(2)乙的成绩的众数是21;(3)乙的成绩的中位数是18.

    则这三个结论中,错误结论的个数为(    )

    A . 0 B . 1 C . 2 D . 3
  • 16. (2021高二上·浦东期末) 投壶是我国古代的一种娱乐活动,比赛投中得分情况分“有初”,“贯耳”,“散射”,“双耳”,“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”.“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为 , 投中“贯耳”的概率为 , 投中“散射”的概率为 , 投中“双耳”的概率为 , 投中“依竿”的概率为 , 未投中(0筹)的概率为.乙的投掷水平与甲相同,且甲、乙投掷相互独立.比赛第一场,两人平局;第二场甲投中“有初”,乙投中“双耳”,则三场比赛结束时,甲获胜的概率为(    )
    A . B . C . D .
三、解答题
  • 17. (2021高二上·浦东期末) 独立地重复抛掷硬币2次,若每次抛掷硬币正面朝上和反面朝上的概率都是0.5,回答以下两个问题:
    1. (1) 现将“独立地重复抛掷硬币2次”作为一次试验,若用分别表示正面朝上和反面朝上,例如用表示某次试验的结果是第一次正面朝上,第二次反面朝上,请用符号写出“独立地重复抛掷硬币2次”的样本空间
    2. (2) 已知在某次试验中第一次抛掷的结果是正面朝上;某同学说“第二次抛掷硬币正面朝上的可能性小于反面朝上的可能性”请问该同学的表述是否正确?(不需要写出理由)
  • 18. (2021高二上·浦东期末) 已知某圆柱底面半径和母线长都是3.
    1. (1) 求出该圆柱的表面积和体积;
    2. (2) 若圆锥与该圆柱底面半径、高都相等,求圆锥的侧面积.
  • 19. (2021高二上·浦东期末) 如图,在正方体中.

    1. (1) 求异面直线所成的角的余弦值;
    2. (2) 求证:直线平面.
  • 20. (2021高二上·浦东期末) 2020年1月8日,在“不忘初心、牢记使命”主题教育总结大会上,习总书记指出:“要把学习贯彻党的创新理论作为思想武装的重中之重,同学习党史、新中国史、改革开放史、社会主义发展史结合起来.”为了提高思想认识,某校开展了“学史明鉴、牢记使命”知识竞赛活动,从950名参赛的学生中随机选取100人的成绩作为样本,得到如图所示的频率分布直方图.

    1. (1) 现将全体参赛学生成绩编号为001--950,使用附图提供的“随机数表”从第二行的第三个数开始从左往右抽,请写出前3个被抽到样本编号;
    2. (2) 求频率分布直方图中的值,并估计该校此次参赛学生成绩的平均分(同一组数据用该组区间的中点值代表).

      附图:

  • 21. (2021高二上·浦东期末) 材料1:三棱锥有4个顶点,6条棱,4个面;正方体有8个顶点,12条棱,6个面;三棱柱有个6顶点,9条棱,5个面;...,通过观察发现:这些几何体的顶点数、棱数及面数都满足简单的规律:;在此基础上瑞士数学家欧拉证明了对于任意简单多面体,其顶点数、棱数及面数都满足多面体欧拉公式.所谓简单多面体指的是同胚于球面的多面体(同胚可以简单理解为如果在一个多面体内部吹气,它能膨胀变为一个球,那么可以认为它与球同胚).正多面体是指多面体的各个面都是全等的正多边形,并且各个多面角(多面角是指有公共端点且两两不共线的条射线,以及相邻两条射线间的平面部分所组成的图形,例如日常生活中我们看到的墙角就是一个特殊的三面角)都是全等的多面角.例如,正四面体的四个面都是全等的三角形,每个顶点有一个三面角,共有四个三面角,可以完全重合,也就是说它们是全等的.正四面体、正六面体、正八面体、正十二面体、正二十面体分别如图所示.我们可以看到,正多面体每个顶点处有相同数量的棱相交,每一条棱处有两个面相交.

    材料2:1996年诺贝尔化学奖授予对发现C60有重大贡献的三位科学家,C60是由60个C原子构成的分子,它是形如足球的多面体,这个多面体有60个顶点,以每一个顶点为端点都有三条棱,面的形状只有五边形和六边形;

    1. (1) 阅读上述材料,请用数学符号表示简单多面体的顶点数、棱数及面数,并用相应的数学符号写出多面体欧拉公式(不需要证明);
    2. (2) 请结合上述材料,在下面两个问题中选择一个回答,并写出解答过程.)问题1:请问C60的分子结构模型中,有几个五边形?问题2:简单多面体中是否存在正十六面体?如果存在请作出它的大致图形并指出面的形状;如果不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息