亲代组合 | F1 | F2 |
白果皮植株×紫果皮植株 | 均为紫果皮 | 紫果皮∶绿果皮∶白果皮≈12∶3∶1 |
由表可知果皮色的遗传受两对等位基因控制,且色果皮基因会阻碍色果皮基因发挥作用。
①据上述资料判断甲的基因型为(控制该病的基因用B/b表示),其患病的原因是来自X染色体非随机失活,从而只表达基因。
②据上述分析可知,患者甲体内WAS综合征相关的基因(填“有”或“没有”)发生改变,其表型发生了改变,且此现象可以遗传。因此患者甲出现WAS综合征症状的现象属于现象。
RABV在宿主细胞内进行1过程,此过程需要的原料由提供。请从图2所示的完整中心法则中选择出RABV在宿主细胞内遗传信息的传递所涉及的过程,包括(填写序号)。
①科研人员将EDAL基因导入小鼠体内,一段时间后用RABV感染小鼠,EDAL基因出的EDAL会与E酶结合并(填“促进”或“抑制”)其修饰。在此转基因小鼠体内,未经修饰的E酶会与侵入细胞的RABV一起。
②已知P蛋白可以通过抑制子代RABV逃逸避免其侵染更多的细胞。据图3可知,经修饰后的E酶进入细胞核后可使P基因启动子甲基化,从而,降低P蛋白的含量。
利用抑制性tRNA进行无义突变遗传病的治疗
无义突变是由于某个碱基的改变使代表某种氨基酸的密码子突变为终止密码子(UAA、UAG或UGA),从而使肽链合成提前终止,造成蛋白质的功能改变,引发相关疾病。约有10%~15%的人类基因相关遗传疾病是由无义突变引发的。常规的基因治疗是将正常基因的cDNA序列或是有治疗价值的基因(如CRISPR-Cas9相关的基因编辑工具)通过一定的方式导入人体靶细胞内,达到替代或修复缺陷基因、治疗疾病的目的。导入基因插入位置不当、过高或过低表达,都可能会导致副作用。尽管基因编辑可以实现生理水平的基因表达,但基因编辑工具引入外源蛋白可能引发强烈的免疫反应仍然是巨大的挑战。
抑制性tRNA(sup-tRNA)由天然tRNA改造而来,它的反密码子通过碱基配对原则可以识别无义突变的终止密码子,使得mRNA在翻译至无义突变位点时不启动翻译终止而是继续向后进行翻译,获得有功能的全长蛋白。
I型黏多糖贮积症的病因,是相关基因发生无义突变,产生终止密码子UAG。研究者构建小鼠该突变基因mLdua和Flag基因融合的载体(图1),以及针对该无义突变设计的sup-tRNA表达载体(产生的sup-tRNA能够识别UAG并携带酪氨酸Tyr,简写作sup-tRNATyr),将其导入细胞进行研究,发现与具有相似作用的化合物G418比较,sup--tRNA的作用更加显著(图2);进一步利用重组腺相关病毒作为载体将sup-tRNA导入患病小鼠模型中,实验显示能够降低黏多糖过度积存,实现对该病症的有效治疗,其疗效可以持续半年以上。
从整体来看,G418在促进跨越无义突变位点继续翻译时引入的氨基酸较为随机,而sup-tRNA引入的氨基酸较为单一,且不会影响内源tRNA稳态,所以sup-tRNA在个体治疗中具有很高的安全性,因而在未来基因突变引起的疾病相关治疗中具有非常大的应用前景。