当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市2021-2022学年第二学期学科素养形成七年级...

更新时间:2023-09-15 浏览次数:90 类型:月考试卷
一、选择题(共10小题,共30分)
二、填空题(每题3分,共15分)
三、解答题(共55分)
  • 16. (2022七下·深圳月考) 计算:已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值.
  • 17. (2022七下·深圳月考) 阅读下列文字,并解决问题。

    已知x2y=3,求2xy(x5y2-3x3y-4x)的值.

    分析:考虑到满足x2y=3的x,y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.

    解:2xy(x5y2-3x3y-4x)

    =2x6y3-6x4y2-8x2y

    =2(x2y)3-6(x2y)2-8x2y,

    将x2y=3代入

    原式=2×33-6×32-8×3=-24.

    请你用上述方法解决下面问题:

    已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.

  • 18. (2022七下·深圳月考) 如图,已知:CD平分∠ACB,AC∥DE,CD∥EF,求证:EF平分∠DEB.

    证明:∵CD平分∠ACB (已知),

    ∴∠DCA=∠DCE(角平分线的定义).

    ∵AC∥DE (已知),

    ∴∠DCA=

    ∴∠DCE=∠CDE (等量代换) .

    ∵CD∥EF(已知),

    =∠CDE( ),

    ∠DCE=∠BEF( ),

    =(等量代换),

    ∴EF平分∠DEB( )

  • 19. (2022七下·深圳月考) 如图,∠AOB是花园内两条小路组成的角,点C在OA上,点D在OB上,现在过点C、点D分别建一条平行于 OB和OA的小路,请用尺规在图上画出它的位置.

  • 21. 我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2, 1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.

    1. (1) 根据上面的规律,写出(a+b)5的展开式.
    2. (2) 利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.
  • 22. (2022七下·深圳月考) 阅读材料:
    (1)1的任何次幂都为1;
    (2)-1的奇数次幂为-1;
    (3)-1的偶数次幂为1;
    (4)任何不等于零的数的零次幂为1.

    请问当x为何值时,代数式(2x+3)x+2020的值为1.

  • 23. (2022七下·深圳月考) 如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180° .

    1. (1) 试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?

      解:由于点P是平行线AB, CD之间的一动点,因此需要对点P的位置进行分类讨论:

      如图1,当点P在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为

      如图2,当点P在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为

    2. (2) 如图3,QE,QF分别平分∠PEB和∠PFD, 且点P在EF左侧.

      ①若∠EPF=60°,则∠EQF= .

      ②猜想∠EPF与∠EQF的数量关系,并说明理由;

      ③如图4,若∠BEQ与∠DFQ的平分线交于点Q1 , ∠BEQ1与∠DFQ1的平分线交于点Q2 , ∠BEQ2与∠DFQ2的平分线交于点Q;依次类推,则∠EPF与∠EQ2018F满足怎样的数量关系?(直接写出结果)

微信扫码预览、分享更方便

试卷信息