当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春汽车经济技术开发区2021-2022学年八年级下学...

更新时间:2023-02-16 浏览次数:49 类型:月考试卷
一、单选题
二、填空题
三、解答题
  • 15. (2022八下·汽开区) 在平面直角坐标系中,已知点的坐标分别为 , 点与点关于原点对称.请在平面直角坐标系中描出点的位置.

  • 16. (2022八下·汽开区) 已知一次函数的图象过两点.
    1. (1) 求此一次函数的解析式.
    2. (2) 若点在这个函数图象上,求的值.
  • 17. (2022八下·汽开区) 已知:如图,平行四边形中,交于点于点于点

    求证:

  • 18. (2022八下·汽开区) 某学校需招聘一名教师,对应聘者的专业知识、语言表达、社会实践三项进行测试,三项测试的满分均为100分.现有四名应聘者的得分情况如下表:

    应聘者

    测试项目成绩(分)

    专业知识

    语言表达

    社会实践

    80

    70

    90

    90

    55

    80

    80

    75

    70

    80

    85

    80

    1. (1) 应聘者三项测试成绩的平均分为分.
    2. (2) 根据工作需要,学校将三项测试分数依次按的比例计入每人的总分,再按得分最高的录用,那么谁将被录用?
  • 19. (2022八下·汽开区) 如图都是 的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.

    1. (1) 请在如图1,如图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等).
    2. (2) 如图1中所画的平行四边形的面积为.
  • 20. (2022八下·汽开区) 运动是健康的源泉.为了解学生身体健康状况,某学校对学生进行立定跳远水平测试,并随机抽取50名学生的成绩(单位:m)进行整理,绘制成如下不完整的频数分布表和频数分布直方图.

    学生立定跳远测试成绩的频数分布表

    分组

    成绩

    频数

    第一组

    第二组

    12

    第三组

    第四组

    10

    请根据图表中所提供的信息,完成下列问题:

    1. (1) 表中a=,b=
    2. (2) 样本成绩的中位数落在第组范围内.
    3. (3) 请将频数分布直方图补充完整.
    4. (4) 已知该校共有1000名学生,估计该校学生立定跳远成绩在范围内的约有人.
  • 21. (2022八下·汽开区) 甲、乙两地相距480千米,一辆货车和一辆轿车先后从甲地出发驶向乙地(两车速度均保持不变).如图,折线表示轿车离甲地的距离(千米)与时间(小时)之间的函数关系,线段表示货车离甲地的距离(千米)与时间(小时)之间的函数关系,请根据图像信息,解答下列问题:

    1. (1) 货车的速度是千米/时,a=
    2. (2) 求线段对应的函数表达式.
    3. (3) 直接写出轿车从甲地出发后经过多长时间追上货车及追上时两车离乙地的距离.
  • 22. (2022八下·汽开区) 【教材呈现】下图是华师版八年级下册数学教材第83页和84页的部分内容.

    平行四边形的判定定理2  一组对边平行且相等的四边形是平行四边形.

    我们可以用演绎推理证明这一结论.

    已知:如图,在四边形中,ABCD且

    求证:四边形是平行四边形.

    证明:连接

    1. (1) 请根据教材提示,结合图,写出完整的证明过程.
    2. (2) 【知识应用】如图①,在中,延长到点 , 使 , 连接 . 求证:四边形是平行四边形.

    3. (3) 【拓展提升】在【知识应用】的条件下,若四边形的面积为7,直接写出四边形的面积.
  • 23. (2022八下·汽开区) 如图,点是函数图像上的任意一点,过点作ABx轴,交另一个函数的图像于点

    1. (1) 若 , 则k=
    2. (2) 当时,若点的横坐标是1,则线段
    3. (3) 若无论点在何处,函数图像上总存在一点 , 使得四边形为平行四边形,求的值.
  • 24. (2022八下·汽开区) 如图,在四边形中,ADBC, , 动点从点出发,沿射线以每秒3个单位的速度运动,动点同时从点出发,在线段上以每秒1个单位的速度向终点运动,当动点到达点时,动点也同时停止运动.设点的运动时间为(秒).

    1. (1) 线段的长为
    2. (2) 用含的代数式表示线段的长.
    3. (3) 求当为何值时,以点为顶点的四边形是平行四边形?
    4. (4) 直接写出以线段为腰,为等腰三角形时的值.

微信扫码预览、分享更方便

试卷信息