一、选择题(本题有10小题,每小题3分,共30分)
-
-
A . 对全国中学生身高和体重情况的调查
B . 对某厂生产的鞋底能承受的弯折次数的调查
C . 调查某水库中现有鱼的数量
D . 某班级所有学生的体育成绩
-
-
-
-
-
-
8.
(2023七下·诸暨期末)
照相机成像应用了一个重要原理,用公式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Eu%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ev%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ev%3C%2Fmi%3E%3Cmo%3E%E2%89%A0%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
表示,其中
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3C%2Fmath%3E)
表示照相机镜头的焦距,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eu%3C%2Fmi%3E%3C%2Fmath%3E)
表示物体到镜头的距离,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ev%3C%2Fmi%3E%3C%2Fmath%3E)
表示胶片(像)到镜头的距离.已知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ev%3C%2Fmi%3E%3C%2Fmath%3E)
, 则
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eu%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3C%2Fmath%3E)
( )
-
9.
(2023七下·诸暨期末)
设“●,▲,■”分别表示三种不同的物体,如图所示,前面两架天平保持平衡,如果要使第三架也平衡,那么“?”处可以放的物体为( )
![](//tikupic.21cnjy.com/2023/08/23/55/08/55081f08ed3aaad9f7ded0993440e6d8.png)
-
A . 2个
B . 3个
C . 4个
D . 5个
二、填空题(本题有10小题,每小题3分,共30分)
-
-
-
-
-
15.
(2023七下·诸暨期末)
如图,把长方形ABCD沿着射线AC平移一段距离,则图中标识的线段中,与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3E%3C%2Fmi%3E%3Cmn%3E%27%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
平行且相等的线段(不包括
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3E%3C%2Fmi%3E%3Cmn%3E%27%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
)有
条.
![](//tikupic.21cnjy.com/2023/08/23/e5/d5/e5d5b6e279e69bad1b2a2147908d1514.png)
-
-
-
-
19.
(2023七下·诸暨期末)
如图,六块纸板拼成一张大矩形纸板,其中一块是边长为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
的正方形,两块是边长为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmath%3E)
的正方形,三块是长为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
, 宽为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmath%3E)
的矩形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
.观察图形,发现多项式
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
可因式分解为
.
![](//tikupic.21cnjy.com/2023/08/23/f2/b0/f2b0fad1d4ea63b59d185b8af9ceb006.png)
-
20.
(2023七下·诸暨期末)
现有甲,乙,丙三种糖混合而成的什锦糖50千克,其中各种糖的千克数和单价如下表.
|
甲种糖
|
乙种糖
|
丙种糖
|
千克数
|
20
|
10
|
20
|
单价(元/千克)
|
15
|
20
|
25
|
商店以糖的平均价(平均价=混合糖的总价格÷混合糖的总千克数)作为什锦糖的单价,要使什锦糖的单价每千克提高1元,则需再加入丙种糖千克.
三、解答题(本大题共6小题,第21~25题每题6分,第26题10分,共计40分;解答需写出必要的文字说明,演算步骤或证明过程.)
-
-
(1)
解方程组
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmtable+columnalign%3D%22left%22%3E%3Cmtr+columnalign%3D%22left%22%3E%3Cmtd+columnalign%3D%22left%22%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3Cmtr+columnalign%3D%22left%22%3E%3Cmtd+columnalign%3D%22left%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmtd%3E%3C%2Fmtr%3E%3C%2Fmtable%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
-
(2)
解分式方程:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
.
-
22.
(2023七下·诸暨期末)
统计某天7:00~9:00段经过高速公路某测速点的汽车的速度(测得的速度为整数,单位km/h),得到如下频数直方图和扇形统计图.请回答下列问题:
![](//tikupic.21cnjy.com/2023/08/23/5c/c5/5cc5cb493f766d0f514e159fd5b09771.png)
-
(1)
这一天7:00~9:00经过观察点的车辆总数是多少?
-
(2)
若该路段汽车限速为110km/h(≤110km/h),问超速行驶的汽车占总数的百分之几?
-
-
-
(1)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
的度数.
-
-
25.
(2023七下·诸暨期末)
阅读理解以下材料内容:
完全平方公式:
适当的变形,可以解决很多的数学问题.
例:若
, 求
的值.
解:
.
.
根据上面的解题思路与方法,解决下列问题:
-
(1)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
, 求xy的值;应用以上知识进行思维拓展;
-
(2)
如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmath%3E)
, 两正方形的面积和
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmath%3E)
, 求图中阴影部分面积.
![](//tikupic.21cnjy.com/2023/08/23/00/82/0082ca3ac1e9c540ead28217d3975457.png)
-
26.
(2023七下·诸暨期末)
某工厂需制作如图所示的竖式与横式两种无盖纸盒(单位cm).
![](//tikupic.21cnjy.com/2023/09/11/d8/c3/d8c379b04e33a2d0846bc83dd86be947_m_236x139.png)
情境
|
内容
|
图形
|
情境1
|
工厂仓库内现存有35cm×35cm的正方形纸板200张,35cm×50cm的长方形纸板400张,用库存纸板制作两种无盖纸盒.
|
![](//tikupic.21cnjy.com/2023/09/11/5f/ea/5feaacbbbddd9cbc21d6215c1d2e23d3_m_166x49.png)
|
情境2
|
库存纸板已用完,采购部重新采购了如图规格的纸板,甲纸板尺寸为50cm×70cm,乙纸板尺寸为35cm×85cm,丙纸板尺寸为35cm×70cm.采购甲纸板有800张,乙纸板有400张,丙纸板有300张.纸板裁剪后可制作两种无盖纸盒.
|
![](//tikupic.21cnjy.com/2023/09/11/84/cc/84ccd93691f8f129e5342de6f7f3ee08_m_307x121.png)
|
情境3
|
某次采购订单中,甲种纸板的采购数量为500张,乙种300张,因采购单被墨水污染,导致丙种纸板的具体数字已经模糊不清,只知道百位和十位数字分别为2和4.
|
![](//tikupic.21cnjy.com/2023/09/11/a9/86/a986a3053346f896778c55470b95438a_m_307x121.png)
|
根据以上信息,解决以下问题:
-
(1)
情境1,问两种纸盒各做多少个,恰好将库存纸板用完?
-
(2)
情境2,问能否通过做适当数量的竖式和横式无盖纸盒,使得纸板的使用率为100%?请通过计算说明理由.
-
(3)
情境3,若本次采购的纸板裁剪做成竖式和横式无盖纸盒,并使得纸板的使用率为100%请你能帮助工厂确定丙纸板的张数.