一、选择题:本大题共8小题,每小题5分,共计40分,每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.
-
-
-
-
-
-
-
A . A , B , D
B . A , B , C
C . B , C , D
D . A , C , D
-
8.
(2023高二上·西乡县开学考)
六氟化硫,化学式为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ES%3C%2Fmi%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 在常压下是一种无色、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.如图所示,其分子结构是六个氟原子处于顶点位置,而硫原子处于中心位置的正八面体,也可将其六个顶点看作正方体各个面的中心点.若正八面体的表面积为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmsqrt%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsqrt%3E%3C%2Fmath%3E)
, 则正八面体外接球的体积为( )
![](//tikupic.21cnjy.com/2024/02/27/38/71/3871b6c0419dd0f68a00b8e01c89e41f_m_170x157.png)
二、选择题:本大题共4小题,每小题5分,共计20分,每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,选对但不全得2分,有选错得得0分.
-
A . 若
, 则
B . 若
, 则
C . 若
,
, 则
D . 若
, 则
-
A . A:B:C=a:b:c
B .
C . 若A>B , 则a>b
D .
-
A .
的最小正周期为
B .
在区间
上单调递减
C .
的图象关于点
对称
D .
的图象关于直线
对称
-
A .
B .
是等边三角形
C . 平面
平面
D . 二面角
的正切值为
三、填空题:本大题共4小题,每小题5分,共计20分.
-
-
-
-
16.
(2023高二上·西乡县开学考)
已知一个球与一个正三棱柱
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的三个侧面和两个底面都相切,且这个球的体积为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3C%2Fmath%3E)
, 那么这个三棱柱的侧面积为
,二面角
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的正弦值为
.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ez%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E1%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
-
-
-
(1)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的解析式;
-
(2)
若将函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的图象上的所有点的纵坐标不变,横坐标伸长到原来的3倍,得到函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的图象,求当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E++%EF%BC%8C+%3C%2Fmo%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
时,函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Eg%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的单调递增区间.
-
-
(1)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
相邻两对称轴的距离;
-
(2)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
在区间
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmfrac%3E%3Cmrow%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%5D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上的值域.
-
-
-
(1)
确定角
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的大小;
-
-
-
(1)
求证:直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmtext%3E%2F%2F%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
-
(2)
求证:平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmo%3E%E2%8A%A5%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
-
(3)
求三棱锥
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的体积.