当前位置: 初中数学 /北师大版(2024) /八年级上册 /第五章 二元一次方程组 /8*三元一次方程组
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023-2024学年北师大版数学八年级上册 5.8*三元一...

更新时间:2023-10-15 浏览次数:50 类型:同步测试
一、选择题
  • 1.

    《九章算术》是中华民族数学史上的瑰宝,方程组:在《九章算术》中用算筹布成:

    , 则用算筹布成的表示的方程组是(  )


    A . B . C . D .
  • 2.

    为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三次飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是(  )

    A . 31分 B . 33分 C . 36分 D . 38分
  • 3.

    如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各10克的砝码,将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,现从图2右侧盘中拿掉砝码和袋子外面的玻璃球,只剩下一小袋玻璃球,要使天平保持平衡,则左侧袋中需拿出玻璃球的个数为(  )

    A . 2 B . 3 C . 4 D . 5
  • 4. 一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三间客房共8间,且每个客房都住满,那么租房方案有(  )

    A . 4种 B . 3种 C . 2种  D . 1种
  • 5. 若三元一次方程组的解使ax+2y+z=0,则a的值为(  )

    A . 1 B . 0 C . -2 D . 4
  • 6. 若方程组中x与y的值相等,则k等于(  )

    A . 1或﹣1 B . 1 C . 5 D . -5
  • 7. 如果方程组的解使代数式kx+2y﹣3z的值为8,则k=(  )

    A . B . - C . 3 D . -3
  • 8. 方程组的解是(  )

    A . B . C . D .
  • 9. 在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=(  )

    A . 13 B . 14 C . 15 D . 16
  • 10. 下列方程组不是三元一次方程组的是(  )

    A . B . C . D .
二、填空题
三、综合题
  • 16. (2022八上·历下期中) 在求代数式的值时,可以用整体求值的方法,化难为易.

    例:已知 , 求的值.

    解:①得:

    ③得:

    的值为2.

    1. (1) 已知 , 求的值;
    2. (2) 马上期中了,班委准备把本学期卖废品的钱给同学们买期中奖品,根据商店的价格,购买本笔记本、支签字笔、支记号笔需要元.通过还价,班委购买了本笔记本、支签字笔、支记号笔,只花了元,请问比原价购买节省了多少钱?
  • 17. (2019八上·遵义月考) 已知a、b、c是三角形的三边长
    1. (1) 化简:
    2. (2) 若 ,求这个三角形的周长.
  • 18. (2022七下·隆昌月考) 阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:
    1. (1) 已知二元一次方程组 ,则x﹣y=,x+y=
    2. (2) 买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?
    3. (3) 对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.
  • 19. (2021八上·永安期末) 有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题∶

    已知实数x、y满足 ①, ②,求 的值.

    本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① ②可得 ,由①+② 可得 .这样的解题思想就是通常所说的“整体思想”.解决问题∶

    1. (1) 已知二元一次方程组 .
    2. (2) 某班级组织活动购买小奖品,买13支铅笔、5块橡皮、2本日记本共需31元,买25支铅笔、9块橡皮、3本日记本共需55元,则购买3支铅笔、3块橡皮、3本日记本共需多少元?
    3. (3) 对于实数x、y,定义新运算∶ ,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知 ,那么 .
  • 20. (2021八上·云阳期末) 我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.

    定义:对于四位自然数 ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数 为“七巧数”.

    例如:3254是“七巧数”,因为 ,所以3254是“七巧数”; 1456不是“七巧数”,因为 ,但 ,所以1456不是“七巧数”.

    1. (1) 若一个“七巧数”的千位数字为 ,则其个位数字可表示为(用含 的代数式表示);
    2. (2) 最大的“七巧数”是,最小的“七巧数”是
    3. (3) 若 是一个“七巧数”,且 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数” .

微信扫码预览、分享更方便

试卷信息